def deepMedicNewModelMain(modelConfigFilepath, absPathToPreTrainedModelGivenInCmdLine, listOfLayersToTransfer): print("Given Model-Configuration File: ", modelConfigFilepath) #Parse the config file in this naive fashion... modelConfig = ModelConfig() exec(open(modelConfigFilepath).read(), modelConfig.configStruct) configGet = modelConfig.get #Main interface #Create Folders and Logger mainOutputAbsFolder = getAbsPathEvenIfRelativeIsGiven( configGet(modelConfig.FOLDER_FOR_OUTPUT), modelConfigFilepath) modelName = configGet(modelConfig.MODEL_NAME) if configGet( modelConfig.MODEL_NAME ) else CreateModelSessionParameters.getDefaultModelName() [folderForCnnModels, folderForLogs ] = makeFoldersNeededForCreateModelSession(mainOutputAbsFolder, modelName) loggerFileName = folderForLogs + "/" + modelName + ".txt" sessionLogger = myLoggerModule.MyLogger(loggerFileName) sessionLogger.print3( "CONFIG: The configuration file for the model-creation session was loaded from: " + str(modelConfigFilepath)) #Fill in the session's parameters. createModelSessionParameters = CreateModelSessionParameters( cnnModelName=modelName, sessionLogger=sessionLogger, mainOutputAbsFolder=mainOutputAbsFolder, folderForSessionCnnModels=folderForCnnModels, #===MODEL PARAMETERS=== numberClasses=configGet(modelConfig.NUMB_CLASSES), numberOfInputChannelsNormal=configGet( modelConfig.NUMB_INPUT_CHANNELS_NORMAL), #===Normal pathway=== numFMsNormal=configGet(modelConfig.N_FMS_NORM), kernDimNormal=configGet(modelConfig.KERN_DIM_NORM), residConnAtLayersNormal=configGet(ModelConfig.RESID_CONN_LAYERS_NORM), lowerRankLayersNormal=configGet(ModelConfig.LOWER_RANK_LAYERS_NORM), #==Subsampled pathway== useSubsampledBool=configGet(modelConfig.USE_SUBSAMPLED), numFMsSubsampled=configGet(modelConfig.N_FMS_SUBS), kernDimSubsampled=configGet(modelConfig.KERN_DIM_SUBS), subsampleFactor=configGet(modelConfig.SUBS_FACTOR), residConnAtLayersSubsampled=configGet( ModelConfig.RESID_CONN_LAYERS_SUBS), lowerRankLayersSubsampled=configGet( ModelConfig.LOWER_RANK_LAYERS_SUBS), #==FC Layers==== numFMsFc=configGet(modelConfig.N_FMS_FC), kernelDimensionsFirstFcLayer=configGet(modelConfig.KERN_DIM_1ST_FC), residConnAtLayersFc=configGet(ModelConfig.RESID_CONN_LAYERS_FC), #==Size of Image Segments == segmDimTrain=configGet(modelConfig.SEG_DIM_TRAIN), segmDimVal=configGet(modelConfig.SEG_DIM_VAL), segmDimInfer=configGet(modelConfig.SEG_DIM_INFERENCE), #== Batch Sizes == batchSizeTrain=configGet(modelConfig.BATCH_SIZE_TR), batchSizeVal=configGet(modelConfig.BATCH_SIZE_VAL), batchSizeInfer=configGet(modelConfig.BATCH_SIZE_INFER), #===Other Architectural Parameters === activationFunction=configGet(modelConfig.ACTIV_FUNCTION), #==Dropout Rates== dropNormal=configGet(modelConfig.DROP_R_NORM), dropSubsampled=configGet(modelConfig.DROP_R_SUBS), dropFc=configGet(modelConfig.DROP_R_FC), #== Weight Initialization== initialMethod=configGet(modelConfig.INITIAL_METHOD), #== Batch Normalization == bnRollingAverOverThatManyBatches=configGet( modelConfig.BN_ROLL_AV_BATCHES), ) createModelSessionParameters.sessionLogger.print3( "\n=========== NEW CREATE-MODEL SESSION ============") createModelSessionParameters.printParametersOfThisSession() createModelSessionParameters.sessionLogger.print3( "\n=========== Creating the CNN model ===============") cnn3dInstance = Cnn3d() cnn3dInstance.make_cnn_model( *createModelSessionParameters.getTupleForCnnCreation()) if absPathToPreTrainedModelGivenInCmdLine != None: # Transfer parameters from a previously trained model to the new one. createModelSessionParameters.sessionLogger.print3( "\n=========== Pre-training the new model ===============") sessionLogger.print3( "...Loading the pre-trained network. This can take a few minutes if the model is big..." ) cnnPretrainedInstance = load_object_from_gzip_file( absPathToPreTrainedModelGivenInCmdLine) sessionLogger.print3( "The pre-trained model was loaded successfully from: " + str(absPathToPreTrainedModelGivenInCmdLine)) from deepmedic import cnnTransferParameters cnn3dInstance = cnnTransferParameters.transferParametersBetweenModels( sessionLogger, cnn3dInstance, cnnPretrainedInstance, listOfLayersToTransfer) createModelSessionParameters.sessionLogger.print3( "\n=========== Saving the model ===============") if absPathToPreTrainedModelGivenInCmdLine != None: filenameAndPathToSaveModel = createModelSessionParameters.getPathAndFilenameToSaveModel( ) + ".initial.pretrained." + datetimeNowAsStr() else: filenameAndPathToSaveModel = createModelSessionParameters.getPathAndFilenameToSaveModel( ) + ".initial." + datetimeNowAsStr() filenameAndPathWhereModelWasSaved = dump_cnn_to_gzip_file_dotSave( cnn3dInstance, filenameAndPathToSaveModel, sessionLogger) createModelSessionParameters.sessionLogger.print3( "=========== Creation of the model: \"" + str(createModelSessionParameters.cnnModelName) + "\" finished =================") return (cnn3dInstance, filenameAndPathWhereModelWasSaved)
def deepMedicNewModelMain(modelConfigFilepath): print "Given Model-Configuration File: ", modelConfigFilepath #Parse the config file in this naive fashion... modelConfig = ModelConfig() execfile(modelConfigFilepath, modelConfig.configStruct) configGet = modelConfig.get #Main interface """ #Do checks. checkIfMainTestConfigIsCorrect(testConfig, testConfigFilepath, absPathToSavedModelFromCmdLine) #Checks REQUIRED fields are complete. checkIfFilesThatListFilesPerCaseAreCorrect(testConfig, testConfigFilepath) #Checks listing-files (whatever given). checkIfOptionalParametersAreGivenCorrectly(testConfig, testConfigFilepath) #At this point it was checked that all parameters (that could be checked) and filepaths are correct, pointing to files/dirs and all files/dirs exist. """ #Create Folders and Logger mainOutputAbsFolder = getAbsPathEvenIfRelativeIsGiven( configGet(modelConfig.FOLDER_FOR_OUTPUT), modelConfigFilepath) modelName = configGet(modelConfig.MODEL_NAME) if configGet( modelConfig.MODEL_NAME ) else CreateModelSessionParameters.getDefaultModelName() [folderForCnnModels, folderForLogs ] = makeFoldersNeededForCreateModelSession(mainOutputAbsFolder, modelName) loggerFileName = folderForLogs + "/" + modelName + ".txt" sessionLogger = myLoggerModule.MyLogger(loggerFileName) sessionLogger.print3( "CONFIG: The configuration file for the model-creation session was loaded from: " + str(modelConfigFilepath)) #Fill in the session's parameters. createModelSessionParameters = CreateModelSessionParameters( cnnModelName=modelName, sessionLogger=sessionLogger, mainOutputAbsFolder=mainOutputAbsFolder, folderForSessionCnnModels=folderForCnnModels, #===MODEL PARAMETERS=== numberClasses=configGet(modelConfig.NUMB_CLASSES), numberOfInputChannelsNormal=configGet( modelConfig.NUMB_INPUT_CHANNELS_NORMAL), #===Normal pathway=== numFMsNormal=configGet(modelConfig.N_FMS_NORM), kernDimNormal=configGet(modelConfig.KERN_DIM_NORM), residConnAtLayersNormal=configGet(ModelConfig.RESID_CONN_LAYERS_NORM), lowerRankLayersNormal=configGet(ModelConfig.LOWER_RANK_LAYERS_NORM), #==Subsampled pathway== useSubsampledBool=configGet(modelConfig.USE_SUBSAMPLED), numFMsSubsampled=configGet(modelConfig.N_FMS_SUBS), kernDimSubsampled=configGet(modelConfig.KERN_DIM_SUBS), subsampleFactor=configGet(modelConfig.SUBS_FACTOR), residConnAtLayersSubsampled=configGet( ModelConfig.RESID_CONN_LAYERS_SUBS), lowerRankLayersSubsampled=configGet( ModelConfig.LOWER_RANK_LAYERS_SUBS), #==FC Layers==== numFMsFc=configGet(modelConfig.N_FMS_FC), kernelDimensionsFirstFcLayer=configGet(modelConfig.KERN_DIM_1ST_FC), residConnAtLayersFc=configGet(ModelConfig.RESID_CONN_LAYERS_FC), #==Size of Image Segments == segmDimTrain=configGet(modelConfig.SEG_DIM_TRAIN), segmDimVal=configGet(modelConfig.SEG_DIM_VAL), segmDimInfer=configGet(modelConfig.SEG_DIM_INFERENCE), #== Batch Sizes == batchSizeTrain=configGet(modelConfig.BATCH_SIZE_TR), batchSizeVal=configGet(modelConfig.BATCH_SIZE_VAL), batchSizeInfer=configGet(modelConfig.BATCH_SIZE_INFER), #===Other Architectural Parameters === activationFunction=configGet(modelConfig.ACTIV_FUNCTION), #==Dropout Rates== dropNormal=configGet(modelConfig.DROP_R_NORM), dropSubsampled=configGet(modelConfig.DROP_R_SUBS), dropFc=configGet(modelConfig.DROP_R_FC), #==Regularization== l1Reg=configGet(modelConfig.L1_REG), l2Reg=configGet(modelConfig.L2_REG), #== Weight Initialization== initialMethod=configGet(modelConfig.INITIAL_METHOD), #== Batch Normalization == bnRollingAverOverThatManyBatches=configGet( modelConfig.BN_ROLL_AV_BATCHES), #====Optimization===== learningRate=configGet(modelConfig.LRATE), optimizerSgd0Adam1Rms2=configGet(modelConfig.OPTIMIZER), classicMom0Nesterov1=configGet(modelConfig.MOM_TYPE), momentumValue=configGet(modelConfig.MOM), momNonNormalized0Normalized1=configGet(modelConfig.MOM_NORM_NONNORM), #Adam b1Adam=configGet(modelConfig.B1_ADAM), b2Adam=configGet(modelConfig.B2_ADAM), eAdam=configGet(modelConfig.EPS_ADAM), #Rms rhoRms=configGet(modelConfig.RHO_RMS), eRms=configGet(modelConfig.EPS_RMS)) createModelSessionParameters.sessionLogger.print3( "=========== NEW CREATE-MODEL SESSION ============") createModelSessionParameters.printParametersOfThisSession() createModelSessionParameters.sessionLogger.print3( "=========== Creating the CNN model ===============") cnn3dInstance = Cnn3d() cnn3dInstance.make_cnn_model( *createModelSessionParameters.getTupleForCnnCreation()) cnn3dInstance.initializeTrainingState( *createModelSessionParameters.getTupleForInitializingTrainingState()) cnn3dInstance.compileTrainFunction( *createModelSessionParameters.getTupleForCompilationOfTrainFunc()) cnn3dInstance.compileValidationFunction( *createModelSessionParameters.getTupleForCompilationOfValFunc()) cnn3dInstance.compileTestAndVisualisationFunction( *createModelSessionParameters.getTupleForCompilationOfTestFunc()) filenameAndPathToSaveModel = createModelSessionParameters.getPathAndFilenameToSaveModel( ) + ".initial." + datetimeNowAsStr() filenameAndPathWhereModelWasSaved = dump_cnn_to_gzip_file_dotSave( cnn3dInstance, filenameAndPathToSaveModel, sessionLogger) createModelSessionParameters.sessionLogger.print3( "=========== Creation of the model: \"" + str(createModelSessionParameters.cnnModelName) + "\" finished =================") return (cnn3dInstance, filenameAndPathWhereModelWasSaved)
def deepMedicNewModelMain(modelConfigFilepath) : print "Given Model-Configuration File: ", modelConfigFilepath #Parse the config file in this naive fashion... modelConfig = ModelConfig() execfile(modelConfigFilepath, modelConfig.configStruct) configGet = modelConfig.get #Main interface """ #Do checks. checkIfMainTestConfigIsCorrect(testConfig, testConfigFilepath, absPathToSavedModelFromCmdLine) #Checks REQUIRED fields are complete. checkIfFilesThatListFilesPerCaseAreCorrect(testConfig, testConfigFilepath) #Checks listing-files (whatever given). checkIfOptionalParametersAreGivenCorrectly(testConfig, testConfigFilepath) #At this point it was checked that all parameters (that could be checked) and filepaths are correct, pointing to files/dirs and all files/dirs exist. """ #Create Folders and Logger mainOutputAbsFolder = getAbsPathEvenIfRelativeIsGiven(configGet(modelConfig.FOLDER_FOR_OUTPUT), modelConfigFilepath) modelName = configGet(modelConfig.MODEL_NAME) if configGet(modelConfig.MODEL_NAME) else CreateModelSessionParameters.getDefaultModelName() [folderForCnnModels, folderForLogs] = makeFoldersNeededForCreateModelSession(mainOutputAbsFolder, modelName) loggerFileName = folderForLogs + "/" + modelName + ".txt" sessionLogger = myLoggerModule.MyLogger(loggerFileName) sessionLogger.print3("CONFIG: The configuration file for the model-creation session was loaded from: " + str(modelConfigFilepath)) #Fill in the session's parameters. createModelSessionParameters = CreateModelSessionParameters( cnnModelName=modelName, sessionLogger=sessionLogger, mainOutputAbsFolder=mainOutputAbsFolder, folderForSessionCnnModels=folderForCnnModels, #===MODEL PARAMETERS=== numberClasses=configGet(modelConfig.NUMB_CLASSES), numberOfInputChannelsNormal=configGet(modelConfig.NUMB_INPUT_CHANNELS_NORMAL), #===Normal pathway=== numFMsNormal=configGet(modelConfig.N_FMS_NORM), kernDimNormal=configGet(modelConfig.KERN_DIM_NORM), residConnAtLayersNormal=configGet(ModelConfig.RESID_CONN_LAYERS_NORM), lowerRankLayersNormal=configGet(ModelConfig.LOWER_RANK_LAYERS_NORM), #==Subsampled pathway== useSubsampledBool=configGet(modelConfig.USE_SUBSAMPLED), numFMsSubsampled=configGet(modelConfig.N_FMS_SUBS), kernDimSubsampled=configGet(modelConfig.KERN_DIM_SUBS), subsampleFactor=configGet(modelConfig.SUBS_FACTOR), residConnAtLayersSubsampled=configGet(ModelConfig.RESID_CONN_LAYERS_SUBS), lowerRankLayersSubsampled=configGet(ModelConfig.LOWER_RANK_LAYERS_SUBS), #==FC Layers==== numFMsFc=configGet(modelConfig.N_FMS_FC), kernelDimensionsFirstFcLayer=configGet(modelConfig.KERN_DIM_1ST_FC), residConnAtLayersFc=configGet(ModelConfig.RESID_CONN_LAYERS_FC), #==Size of Image Segments == segmDimTrain=configGet(modelConfig.SEG_DIM_TRAIN), segmDimVal=configGet(modelConfig.SEG_DIM_VAL), segmDimInfer=configGet(modelConfig.SEG_DIM_INFERENCE), #== Batch Sizes == batchSizeTrain=configGet(modelConfig.BATCH_SIZE_TR), batchSizeVal=configGet(modelConfig.BATCH_SIZE_VAL), batchSizeInfer=configGet(modelConfig.BATCH_SIZE_INFER), #===Other Architectural Parameters === activationFunction=configGet(modelConfig.ACTIV_FUNCTION), #==Dropout Rates== dropNormal=configGet(modelConfig.DROP_R_NORM), dropSubsampled=configGet(modelConfig.DROP_R_SUBS), dropFc=configGet(modelConfig.DROP_R_FC), #==Regularization== l1Reg=configGet(modelConfig.L1_REG), l2Reg=configGet(modelConfig.L2_REG), #== Weight Initialization== initialMethod=configGet(modelConfig.INITIAL_METHOD), #== Batch Normalization == bnRollingAverOverThatManyBatches=configGet(modelConfig.BN_ROLL_AV_BATCHES), #====Optimization===== learningRate=configGet(modelConfig.LRATE), optimizerSgd0Adam1Rms2=configGet(modelConfig.OPTIMIZER), classicMom0Nesterov1=configGet(modelConfig.MOM_TYPE), momentumValue=configGet(modelConfig.MOM), momNonNormalized0Normalized1=configGet(modelConfig.MOM_NORM_NONNORM), #Adam b1Adam=configGet(modelConfig.B1_ADAM), b2Adam=configGet(modelConfig.B2_ADAM), eAdam=configGet(modelConfig.EPS_ADAM), #Rms rhoRms=configGet(modelConfig.RHO_RMS), eRms=configGet(modelConfig.EPS_RMS) ) createModelSessionParameters.sessionLogger.print3("=========== NEW CREATE-MODEL SESSION ============") createModelSessionParameters.printParametersOfThisSession() createModelSessionParameters.sessionLogger.print3("=========== Creating the CNN model ===============") cnn3dInstance = Cnn3d() cnn3dInstance.make_cnn_model(*createModelSessionParameters.getTupleForCnnCreation()) cnn3dInstance.initializeTrainingState(*createModelSessionParameters.getTupleForInitializingTrainingState()) cnn3dInstance.compileTrainFunction(*createModelSessionParameters.getTupleForCompilationOfTrainFunc()) cnn3dInstance.compileValidationFunction(*createModelSessionParameters.getTupleForCompilationOfValFunc()) cnn3dInstance.compileTestAndVisualisationFunction(*createModelSessionParameters.getTupleForCompilationOfTestFunc()) filenameAndPathToSaveModel = createModelSessionParameters.getPathAndFilenameToSaveModel() + ".initial." + datetimeNowAsStr() filenameAndPathWhereModelWasSaved = dump_cnn_to_gzip_file_dotSave(cnn3dInstance, filenameAndPathToSaveModel, sessionLogger) createModelSessionParameters.sessionLogger.print3("=========== Creation of the model: \"" + str(createModelSessionParameters.cnnModelName) +"\" finished =================") return (cnn3dInstance, filenameAndPathWhereModelWasSaved)