示例#1
0
    def make_cnn_model(
        self,
        log,
        cnnModelName,
        #=== Model Parameters ===
        numberOfOutputClasses,
        numberOfImageChannelsPath1,
        numberOfImageChannelsPath2,

        #=== Normal Pathway ===
        nkerns,
        kernelDimensions,
        #=== Subsampled Pathway ===
        # THESE NEXT TWO, ALONG WITH THE ONES FOR FC, COULD BE PUT IN ONE STRUCTURE WITH NORMAL, EG LIKE kerns = [ [kernsNorm], [kernsSub], [kernsFc]]
        nkernsSubsampled,  # Used to control if secondary pathways: [] if no secondary pathways. Now its the "factors"
        kernelDimensionsSubsampled,
        subsampleFactorsPerSubPath,  # Controls how many pathways: [] if no secondary pathways. Else, List of lists. One sublist per secondary pathway. Each sublist has 3 ints, the rcz subsampling factors.
        #=== FC Layers ===
        fcLayersFMs,
        kernelDimensionsFirstFcLayer,
        softmaxTemperature,

        #=== Other Architectural params ===
        activationFunc,
        #---Residual Connections----
        indicesOfLayersToConnectResidualsInOutput,
        #--Lower Rank Layer Per Pathway---
        indicesOfLowerRankLayersPerPathway,
        ranksOfLowerRankLayersForEachPathway,
        #---Pooling---
        maxPoolingParamsStructure,
        #--- Skip Connections --- #Deprecated, not used/supported
        convLayersToConnectToFirstFcForMultiscaleFromAllLayerTypes,

        #===Size of Image Segments ===
        imagePartDimensionsTraining,
        imagePartDimensionsValidation,
        imagePartDimensionsTesting,

        #=== Others ===
        # Dropout
        dropoutRatesForAllPathways,  # list of sublists, one for each pathway. Each either empty or full with the dropout rates of all the layers in the path.
        # Initialization
        convWInitMethod,
        # Batch Normalization
        applyBnToInputOfPathways,  # one Boolean flag per pathway type. Placeholder for the FC pathway.
        movingAvForBnOverXBatches,
    ):

        self.cnnModelName = cnnModelName

        # ============= Model Parameters Passed as arguments ================
        self.num_classes = numberOfOutputClasses
        self.numberOfImageChannelsPath1 = numberOfImageChannelsPath1
        self.numberOfImageChannelsPath2 = numberOfImageChannelsPath2
        # === Architecture ===
        self.nkerns = nkerns  # Useless?
        self.nkernsSubsampled = nkernsSubsampled  # Useless?
        self.numSubsPaths = len(
            subsampleFactorsPerSubPath
        )  # do I want this as attribute? Or function is ok?

        # fcLayersFMs???
        self.kernelDimensionsFirstFcLayer = kernelDimensionsFirstFcLayer

        # == Other Architectural Params ==
        self.indicesOfLayersToConnectResidualsInOutput = indicesOfLayersToConnectResidualsInOutput
        self.indicesOfLowerRankLayersPerPathway = indicesOfLowerRankLayersPerPathway
        # pooling?

        # == Others ==
        self.dropoutRatesForAllPathways = dropoutRatesForAllPathways

        # ======== Calculated Attributes =========
        #This recField CNN should in future be calculated with all non-secondary pathways, ie normal+fc. Use another variable for pathway.recField.
        self.recFieldCnn = calcRecFieldFromKernDimListPerLayerWhenStrides1(
            kernelDimensions)

        #==============================
        rng = np.random.RandomState(seed=None)

        ######################
        # BUILD ACTUAL MODEL #
        ######################
        log.print3("...Building the CNN model...")

        # Symbolic variables, which stand for the input. Will be loaded by the compiled trainining/val/test function.
        # >>> I should have an input argument. Which, if given None, the below placeholders are created.

        if True:  # Not given input tensors as arguments
            self._setupInputXTensors()
        else:  # Inputs given as argument tensors. Eg in adv from discr or from batcher.
            self._setupInputXTensorsFromGivenArgs(
                1, 2, 3, 4, 5, 6
            )  # Placeholder. Todo: Replace with normal arguments, when input tensor is given. Eg adversarial G.

        #=======================Make the NORMAL PATHWAY of the CNN=======================
        thisPathway = NormalPathway()
        self.pathways.append(thisPathway)
        thisPathwayType = thisPathway.pType()

        inputToPathwayTrain = self._inp_x['train']['x']
        inputToPathwayVal = self._inp_x['val']['x']
        inputToPathwayTest = self._inp_x['test']['x']
        inputToPathwayShapeTrain = [None, numberOfImageChannelsPath1
                                    ] + imagePartDimensionsTraining
        inputToPathwayShapeVal = [None, numberOfImageChannelsPath1
                                  ] + imagePartDimensionsValidation
        inputToPathwayShapeTest = [None, numberOfImageChannelsPath1
                                   ] + imagePartDimensionsTesting

        thisPathWayNKerns = nkerns
        thisPathWayKernelDimensions = kernelDimensions

        thisPathwayNumOfLayers = len(thisPathWayNKerns)
        thisPathwayUseBnPerLayer = [movingAvForBnOverXBatches > 0
                                    ] * thisPathwayNumOfLayers
        thisPathwayUseBnPerLayer[0] = applyBnToInputOfPathways[
            thisPathwayType] if movingAvForBnOverXBatches > 0 else False  # For the 1st layer, ask specific flag.

        thisPathwayActivFuncPerLayer = [activationFunc
                                        ] * thisPathwayNumOfLayers
        thisPathwayActivFuncPerLayer[
            0] = "linear" if thisPathwayType != pt.FC else activationFunc  # To not apply activation on raw input. -1 is linear activation.

        thisPathway.makeLayersOfThisPathwayAndReturnDimensionsOfOutputFM(
            log, rng, inputToPathwayTrain, inputToPathwayVal,
            inputToPathwayTest, inputToPathwayShapeTrain,
            inputToPathwayShapeVal, inputToPathwayShapeTest, thisPathWayNKerns,
            thisPathWayKernelDimensions, convWInitMethod,
            thisPathwayUseBnPerLayer, movingAvForBnOverXBatches,
            thisPathwayActivFuncPerLayer,
            dropoutRatesForAllPathways[thisPathwayType],
            maxPoolingParamsStructure[thisPathwayType],
            indicesOfLowerRankLayersPerPathway[thisPathwayType],
            ranksOfLowerRankLayersForEachPathway[thisPathwayType],
            indicesOfLayersToConnectResidualsInOutput[thisPathwayType])

        [
            dimsOfOutputFrom1stPathwayTrain, dimsOfOutputFrom1stPathwayVal,
            dimsOfOutputFrom1stPathwayTest
        ] = thisPathway.getShapeOfOutput()

        #=======================Make the SUBSAMPLED PATHWAYs of the CNN=============================
        for subpath_i in range(self.numSubsPaths):
            thisPathway = SubsampledPathway(
                subsampleFactorsPerSubPath[subpath_i])
            self.pathways.append(
                thisPathway
            )  # There will be at least an entry as a secondary pathway. But it won't have any layers if it was not actually used.
            thisPathwayType = thisPathway.pType()

            inputToPathwayTrain = self._inp_x['train']['x_sub_' +
                                                       str(subpath_i)]
            inputToPathwayVal = self._inp_x['val']['x_sub_' + str(subpath_i)]
            inputToPathwayTest = self._inp_x['test']['x_sub_' + str(subpath_i)]

            thisPathWayNKerns = nkernsSubsampled[subpath_i]
            thisPathWayKernelDimensions = kernelDimensionsSubsampled

            thisPathwayNumOfLayers = len(thisPathWayNKerns)
            thisPathwayUseBnPerLayer = [movingAvForBnOverXBatches > 0
                                        ] * thisPathwayNumOfLayers
            thisPathwayUseBnPerLayer[0] = applyBnToInputOfPathways[
                thisPathwayType] if movingAvForBnOverXBatches > 0 else False  # For the 1st layer, ask specific flag.

            thisPathwayActivFuncPerLayer = [activationFunc
                                            ] * thisPathwayNumOfLayers
            thisPathwayActivFuncPerLayer[
                0] = "linear" if thisPathwayType != pt.FC else activationFunc  # To not apply activation on raw input. -1 is linear activation.

            inputToPathwayShapeTrain = [
                None, numberOfImageChannelsPath2
            ] + thisPathway.calcInputRczDimsToProduceOutputFmsOfCompatibleDims(
                thisPathWayKernelDimensions, dimsOfOutputFrom1stPathwayTrain)
            inputToPathwayShapeVal = [
                None, numberOfImageChannelsPath2
            ] + thisPathway.calcInputRczDimsToProduceOutputFmsOfCompatibleDims(
                thisPathWayKernelDimensions, dimsOfOutputFrom1stPathwayVal)
            inputToPathwayShapeTest = [
                None, numberOfImageChannelsPath2
            ] + thisPathway.calcInputRczDimsToProduceOutputFmsOfCompatibleDims(
                thisPathWayKernelDimensions, dimsOfOutputFrom1stPathwayTest)

            thisPathway.makeLayersOfThisPathwayAndReturnDimensionsOfOutputFM(
                log, rng, inputToPathwayTrain, inputToPathwayVal,
                inputToPathwayTest, inputToPathwayShapeTrain,
                inputToPathwayShapeVal, inputToPathwayShapeTest,
                thisPathWayNKerns, thisPathWayKernelDimensions,
                convWInitMethod, thisPathwayUseBnPerLayer,
                movingAvForBnOverXBatches, thisPathwayActivFuncPerLayer,
                dropoutRatesForAllPathways[thisPathwayType],
                maxPoolingParamsStructure[thisPathwayType],
                indicesOfLowerRankLayersPerPathway[thisPathwayType],
                ranksOfLowerRankLayersForEachPathway[thisPathwayType],
                indicesOfLayersToConnectResidualsInOutput[thisPathwayType])

            # this creates essentially the "upsampling layer"
            thisPathway.upsampleOutputToNormalRes(
                upsamplingScheme="repeat",
                shapeToMatchInRczTrain=dimsOfOutputFrom1stPathwayTrain,
                shapeToMatchInRczVal=dimsOfOutputFrom1stPathwayVal,
                shapeToMatchInRczTest=dimsOfOutputFrom1stPathwayTest)

        #====================================CONCATENATE the output of the 2 cnn-pathways=============================
        inputToFirstFcLayerTrain = None
        inputToFirstFcLayerVal = None
        inputToFirstFcLayerTest = None
        numberOfFmsOfInputToFirstFcLayer = 0
        for path_i in range(len(self.pathways)):
            [
                outputNormResOfPathTrain, outputNormResOfPathVal,
                outputNormResOfPathTest
            ] = self.pathways[path_i].getOutputAtNormalRes()
            [
                dimsOfOutputNormResOfPathTrain, dimsOfOutputNormResOfPathVal,
                dimsOfOutputNormResOfPathTest
            ] = self.pathways[path_i].getShapeOfOutputAtNormalRes()

            inputToFirstFcLayerTrain = tf.concat(
                [inputToFirstFcLayerTrain, outputNormResOfPathTrain],
                axis=1) if path_i != 0 else outputNormResOfPathTrain
            inputToFirstFcLayerVal = tf.concat(
                [inputToFirstFcLayerVal, outputNormResOfPathVal],
                axis=1) if path_i != 0 else outputNormResOfPathVal
            inputToFirstFcLayerTest = tf.concat(
                [inputToFirstFcLayerTest, outputNormResOfPathTest],
                axis=1) if path_i != 0 else outputNormResOfPathTest
            numberOfFmsOfInputToFirstFcLayer += dimsOfOutputNormResOfPathTrain[
                1]

        #======================= Make the Fully Connected Layers =======================
        thisPathway = FcPathway()
        self.pathways.append(thisPathway)
        thisPathwayType = thisPathway.pType()

        # This is the shape of the kernel in the first FC layer.
        # NOTE: If there is no hidden FC layer, this kernel is used in the Classification layer then.
        # Originally it was 1x1x1 only. The pathways themselves where taking care of the receptive field.
        # However I can now define it larger (eg 3x3x3), in case it helps combining the multiresolution features better/smoother.
        # The convolution is seamless, ie same shape output/input, by mirror padding the input.
        firstFcLayerAfterConcatenationKernelShape = self.kernelDimensionsFirstFcLayer
        voxelsToPadPerDim = [
            kernelDim - 1
            for kernelDim in firstFcLayerAfterConcatenationKernelShape
        ]
        log.print3("DEBUG: Shape of the kernel of the first FC layer is : " +
                   str(firstFcLayerAfterConcatenationKernelShape))
        log.print3(
            "DEBUG: Input to the FC Pathway will be padded by that many voxels per dimension: "
            + str(voxelsToPadPerDim))
        inputToPathwayTrain = padImageWithMirroring(inputToFirstFcLayerTrain,
                                                    voxelsToPadPerDim)
        inputToPathwayVal = padImageWithMirroring(inputToFirstFcLayerVal,
                                                  voxelsToPadPerDim)
        inputToPathwayTest = padImageWithMirroring(inputToFirstFcLayerTest,
                                                   voxelsToPadPerDim)
        inputToPathwayShapeTrain = [None, numberOfFmsOfInputToFirstFcLayer
                                    ] + dimsOfOutputFrom1stPathwayTrain[2:5]
        inputToPathwayShapeVal = [None, numberOfFmsOfInputToFirstFcLayer
                                  ] + dimsOfOutputFrom1stPathwayVal[2:5]
        inputToPathwayShapeTest = [None, numberOfFmsOfInputToFirstFcLayer
                                   ] + dimsOfOutputFrom1stPathwayTest[2:5]
        for rcz_i in range(3):
            inputToPathwayShapeTrain[2 + rcz_i] += voxelsToPadPerDim[rcz_i]
            inputToPathwayShapeVal[2 + rcz_i] += voxelsToPadPerDim[rcz_i]
            inputToPathwayShapeTest[2 + rcz_i] += voxelsToPadPerDim[rcz_i]

        thisPathWayNKerns = fcLayersFMs + [self.num_classes]
        thisPathWayKernelDimensions = [
            firstFcLayerAfterConcatenationKernelShape
        ] + [[1, 1, 1]] * (len(thisPathWayNKerns) - 1)

        thisPathwayNumOfLayers = len(thisPathWayNKerns)
        thisPathwayUseBnPerLayer = [movingAvForBnOverXBatches > 0
                                    ] * thisPathwayNumOfLayers
        thisPathwayUseBnPerLayer[0] = applyBnToInputOfPathways[
            thisPathwayType] if movingAvForBnOverXBatches > 0 else False  # For the 1st layer, ask specific flag.

        thisPathwayActivFuncPerLayer = [activationFunc
                                        ] * thisPathwayNumOfLayers
        thisPathwayActivFuncPerLayer[
            0] = "linear" if thisPathwayType != pt.FC else activationFunc  # To not apply activation on raw input. -1 is linear activation.

        thisPathway.makeLayersOfThisPathwayAndReturnDimensionsOfOutputFM(
            log, rng, inputToPathwayTrain, inputToPathwayVal,
            inputToPathwayTest, inputToPathwayShapeTrain,
            inputToPathwayShapeVal, inputToPathwayShapeTest, thisPathWayNKerns,
            thisPathWayKernelDimensions, convWInitMethod,
            thisPathwayUseBnPerLayer, movingAvForBnOverXBatches,
            thisPathwayActivFuncPerLayer,
            dropoutRatesForAllPathways[thisPathwayType],
            maxPoolingParamsStructure[thisPathwayType],
            indicesOfLowerRankLayersPerPathway[thisPathwayType],
            ranksOfLowerRankLayersForEachPathway[thisPathwayType],
            indicesOfLayersToConnectResidualsInOutput[thisPathwayType])

        # =========== Make the final Target Layer (softmax, regression, whatever) ==========
        log.print3("Adding the final Softmax Target layer...")

        self.finalTargetLayer = self._getClassificationLayer()
        self.finalTargetLayer.makeLayer(rng,
                                        self.getFcPathway().getLayer(-1),
                                        softmaxTemperature)
        (self._output_gt_tensor_feeds['train']['y_gt'],
         self._output_gt_tensor_feeds['val']['y_gt']
         ) = self.finalTargetLayer.get_output_gt_tensor_feed()

        log.print3("Finished building the CNN's model.")
示例#2
0
 def calcRecFieldOfPathway(self, kernelDimsPerLayer):
     return calcRecFieldFromKernDimListPerLayerWhenStrides1(
         kernelDimsPerLayer)
    def __init__(self, log, cfg):

        self.log = log
        self.cnnModelName = cfg[cfg.MODEL_NAME] if cfg[
            cfg.MODEL_NAME] is not None else getDefaultModelName()

        #===========MODEL PARAMETERS==========
        self.numberClasses = cfg[cfg.NUM_CLASSES] if cfg[
            cfg.NUM_CLASSES] is not None else self.errReqNumClasses()
        self.numberOfInputChannelsNormal = cfg[cfg.NUM_INPUT_CHANS] if cfg[
            cfg.NUM_INPUT_CHANS] is not None else self.errReqNumChannels()
        assert self.numberOfInputChannelsNormal > 0
        #===Normal pathway===
        self.numFMsPerLayerNormal = cfg[
            cfg.N_FMS_NORM] if cfg[cfg.N_FMS_NORM] is not None and len(
                cfg[cfg.N_FMS_NORM]) > 0 else self.errReqFMsNormal()
        numOfLayers = len(self.numFMsPerLayerNormal)
        self.kernDimPerLayerNormal = cfg[
            cfg.KERN_DIM_NORM] if checkKernDimPerLayerCorrect3dAndNumLayers(
                cfg[cfg.KERN_DIM_NORM],
                numOfLayers) else self.errReqKernDimNormal()
        self.receptiveFieldNormal = calcRecFieldFromKernDimListPerLayerWhenStrides1(
            self.kernDimPerLayerNormal)  # Just for COMPATIBILITY CHECKS!
        residConnAtLayersNormal = cfg[cfg.RESID_CONN_LAYERS_NORM] if cfg[
            cfg.RESID_CONN_LAYERS_NORM] is not None else [
            ]  #layer number, starting from 1 for 1st layer. NOT indices.
        lowerRankLayersNormal = cfg[cfg.LOWER_RANK_LAYERS_NORM] if cfg[
            cfg.LOWER_RANK_LAYERS_NORM] is not None else [
            ]  #layer number, starting from 1 for 1st layer. NOT indices.

        #==Subsampled pathway==
        self.useSubsampledBool = cfg[cfg.USE_SUBSAMPLED] if cfg[
            cfg.USE_SUBSAMPLED] is not None else False
        if not self.useSubsampledBool:
            self.numFMsPerLayerSubsampled = []
            self.kernDimPerLayerSubsampled = []
            self.receptiveFieldSubsampled = []
            self.subsampleFactor = []
            residConnAtLayersSubsampled = []
            lowerRankLayersSubsampled = []

        else:
            self.numFMsPerLayerSubsampled = cfg[cfg.N_FMS_SUBS] if cfg[
                cfg.N_FMS_SUBS] is not None else self.numFMsPerLayerNormal
            self.numFMsPerLayerSubsampled = self.changeDatastructureToListOfListsForSecondaryPathwaysIfNeeded(
                self.numFMsPerLayerSubsampled)
            # check that all subsampled pathways have the same number of layers. Limitation in the code currently, because I use kernDimSubsampled for all of them.
            if not self.checkThatSublistsHaveSameLength(
                    self.numFMsPerLayerSubsampled):
                self.errReqSameNumOfLayersPerSubPathway()

            numOfLayersInEachSubPath = len(self.numFMsPerLayerSubsampled[0])
            if cfg[cfg.
                   KERN_DIM_SUBS] == None and numOfLayersInEachSubPath == len(
                       self.numFMsPerLayerNormal):
                self.kernDimPerLayerSubsampled = self.kernDimPerLayerNormal
                self.receptiveFieldSubsampled = self.receptiveFieldNormal
            elif cfg[
                    cfg.
                    KERN_DIM_SUBS] == None and numOfLayersInEachSubPath != len(
                        self.numFMsPerLayerNormal
                    ):  #user specified subsampled layers.
                self.errorRequireKernelDimensionsSubsampled(
                    self.kernDimPerLayerNormal, cfg[cfg.N_FMS_SUBS])
            # kernDimSubsampled was specified. Now it's going to be tricky to make sure everything alright.
            elif not checkKernDimPerLayerCorrect3dAndNumLayers(
                    cfg[cfg.KERN_DIM_SUBS], numOfLayersInEachSubPath):
                self.errReqKernDimNormalCorr()
            else:  #kernel dimensions specified and are correct (3d, same number of layers as subsampled specified). Need to check the two receptive fields and make sure they are correct.
                self.kernDimPerLayerSubsampled = cfg[cfg.KERN_DIM_SUBS]
                self.receptiveFieldSubsampled = calcRecFieldFromKernDimListPerLayerWhenStrides1(
                    self.kernDimPerLayerSubsampled)
                if self.receptiveFieldNormal != self.receptiveFieldSubsampled:
                    self.errorReceptiveFieldsOfNormalAndSubsampledDifferent(
                        self.receptiveFieldNormal,
                        self.receptiveFieldSubsampled)
                #Everything alright, finally. Proceed safely...
            self.subsampleFactor = cfg[cfg.SUBS_FACTOR] if cfg[
                cfg.SUBS_FACTOR] is not None else [3, 3, 3]
            self.subsampleFactor = self.changeDatastructureToListOfListsForSecondaryPathwaysIfNeeded(
                self.subsampleFactor)
            for secondaryPathway_i in range(
                    len(self.subsampleFactor)
            ):  #It should now be a list of lists, one sublist per secondary pathway. This is what is currently defining how many pathways to use.
                if len(self.subsampleFactor[secondaryPathway_i]) != 3:
                    self.errorSubFactor3d()
                if not checkSubsampleFactorEven(
                        self.subsampleFactor[secondaryPathway_i]):
                    self.warnSubFactorOdd()
            #---For multiple lower-scale pathways, via the numFMsPerLayerSubsampled and subsampleFactor config ----
            numOfSubsPaths = max(len(self.numFMsPerLayerSubsampled),
                                 len(self.subsampleFactor))
            # Default behaviour:
            # If less sublists in numFMsPerLayerSubsampled were given than numOfSubsPaths, add more sublists of numFMsPerLayerSubsampled, for the extra subpaths.
            for _ in range(numOfSubsPaths -
                           len(self.numFMsPerLayerSubsampled)):
                numFmsForLayersOfLastSubPath = self.numFMsPerLayerSubsampled[
                    -1]
                self.numFMsPerLayerSubsampled.append([
                    max(1, int(numFmsInLayer_i))
                    for numFmsInLayer_i in numFmsForLayersOfLastSubPath
                ])
            # If less sublists in subsampleFactor were given than numOfSubsPaths, add more sublists of subsampleFactors, for the extra subpaths.
            for _ in range(numOfSubsPaths - len(self.subsampleFactor)):
                self.subsampleFactor.append(
                    [
                        subFactorInDim_i + 2
                        for subFactorInDim_i in self.subsampleFactor[-1]
                    ]
                )  # Adds one more sublist, eg [5,5,5], which is the last subFactor, increased by +2 in all rcz dimensions.

            # Residuals and lower ranks.
            residConnAtLayersSubsampled = cfg[cfg.RESID_CONN_LAYERS_SUBS] if cfg[
                cfg.
                RESID_CONN_LAYERS_SUBS] is not None else residConnAtLayersNormal
            lowerRankLayersSubsampled = cfg[cfg.LOWER_RANK_LAYERS_SUBS] if cfg[
                cfg.
                LOWER_RANK_LAYERS_SUBS] is not None else lowerRankLayersNormal

        #==FC Layers==
        self.numFMsInExtraFcs = cfg[cfg.N_FMS_FC] if cfg[
            cfg.N_FMS_FC] is not None else []
        self.kernelDimensionsFirstFcLayer = cfg[cfg.KERN_DIM_1ST_FC] if cfg[
            cfg.KERN_DIM_1ST_FC] is not None else [1, 1, 1]
        assert len(self.kernelDimensionsFirstFcLayer) == 3 and (False not in [
            dim > 0 for dim in self.kernelDimensionsFirstFcLayer
        ])
        residConnAtLayersFc = cfg[cfg.RESID_CONN_LAYERS_FC] if cfg[
            cfg.RESID_CONN_LAYERS_FC] is not None else []

        #==Size of Image Segments ==
        self.segmDimNormalTrain = cfg[cfg.SEG_DIM_TRAIN] if cfg[
            cfg.SEG_DIM_TRAIN] is not None else self.errReqSegmDimTrain()
        self.segmDimNormalVal = cfg[cfg.SEG_DIM_VAL] if cfg[
            cfg.SEG_DIM_VAL] is not None else self.receptiveFieldNormal
        self.segmDimNormalInfer = cfg[cfg.SEG_DIM_INFER] if cfg[
            cfg.SEG_DIM_INFER] is not None else self.segmDimNormalTrain
        for (tr0_val1_inf2,
             segmentDimensions) in [(0, self.segmDimNormalTrain),
                                    (1, self.segmDimNormalVal),
                                    (2, self.segmDimNormalInfer)]:
            if not checkRecFieldVsSegmSize(self.receptiveFieldNormal,
                                           segmentDimensions):
                self.errorSegmDimensionsSmallerThanReceptiveF(
                    self.receptiveFieldNormal, segmentDimensions,
                    tr0_val1_inf2)

        #=== Batch Sizes ===
        self.batchSizeTrain = cfg[cfg.BATCH_SIZE_TR] if cfg[
            cfg.BATCH_SIZE_TR] is not None else self.errReqBatchSizeTr()
        self.batchSizeVal = cfg[cfg.BATCH_SIZE_VAL] if cfg[
            cfg.BATCH_SIZE_VAL] is not None else self.batchSizeTrain
        self.batchSizeInfer = cfg[cfg.BATCH_SIZE_INFER] if cfg[
            cfg.BATCH_SIZE_INFER] is not None else self.batchSizeTrain

        #=== Dropout rates ===
        self.dropNormal = cfg[cfg.DROP_NORM] if cfg[
            cfg.DROP_NORM] is not None else []
        self.dropSubsampled = cfg[cfg.DROP_SUBS] if cfg[
            cfg.DROP_SUBS] is not None else []
        self.dropFc = cfg[cfg.DROP_FC] if cfg[
            cfg.DROP_FC] is not None else self.defaultDropFcList(
                self.numFMsInExtraFcs)  #default = [0.0, 0.5, ..., 0.5]
        self.dropoutRatesForAllPathways = [
            self.dropNormal, self.dropSubsampled, self.dropFc, []
        ]

        #== Weight Initialization==
        self.convWInitMethod = cfg[cfg.CONV_W_INIT] if cfg[
            cfg.CONV_W_INIT] is not None else ["fanIn", 2]
        if not self.convWInitMethod[0] in ["normal", "fanIn"]:
            self.errorReqInitializationMethod()
        #== Activation Function ==
        self.activationFunc = cfg[cfg.ACTIV_FUNC] if cfg[
            cfg.ACTIV_FUNC] is not None else "prelu"
        if not self.activationFunc in [
                "linear", "relu", "prelu", "elu", "selu"
        ]:
            self.errorReqActivFunction()

        #==BATCH NORMALIZATION==
        self.applyBnToInputOfPathways = [
            False, False, True
        ]  # Per pathway type. The 3rd entry, for FC, should always be True.
        self.bnRollAverOverThatManyBatches = cfg[
            cfg.BN_ROLL_AV_BATCHES] if cfg[
                cfg.BN_ROLL_AV_BATCHES] is not None else 60

        #==============CALCULATED=====================
        # Residual Connections backwards, per pathway type :
        self.checkLayersForResidualsGivenDoNotInclude1st(
            residConnAtLayersNormal, residConnAtLayersSubsampled,
            residConnAtLayersFc)
        # The following variable passed to the system takes indices, ie number starts from 0. User specifies from 1.
        self.indicesOfLayersToConnectResidualsInOutput = [
            [layerNum - 1 for layerNum in residConnAtLayersNormal],
            [layerNum - 1 for layerNum in residConnAtLayersSubsampled],
            [layerNum - 1 for layerNum in residConnAtLayersFc], []
        ]

        self.indicesOfLowerRankLayersPerPathway = [
            [layerNum - 1 for layerNum in lowerRankLayersNormal],
            [layerNum - 1 for layerNum in lowerRankLayersSubsampled],
            [],  #FC doesn't make sense to be lower rank. It's 1x1x1 anyway.
            []
        ]
        self.ranksOfLowerRankLayersForEachPathway = [[
            2 for layer_i in self.indicesOfLowerRankLayersPerPathway[0]
        ], [2 for layer_i in self.indicesOfLowerRankLayersPerPathway[1]], [],
                                                     []]
        #============= HIDDENS ======================
        self.numberOfInputChannelsSubsampled = self.numberOfInputChannelsNormal

        #MultiscaleConnections:
        self.convLayersToConnectToFirstFcForMultiscaleFromAllLayerTypes = [
            [], []
        ]  #a sublist for each pathway. Starts from 0 index. Give a sublist, even empty for no connections.
        #... It's ok if I dont have a 2nd path but still give a 2nd sublist, it's controlled by nkernsSubsampled.

        #-------POOLING---------- (not fully supported currently)
        #One entry per pathway-type. leave [] if the pathway does not exist or there is no mp there AT ALL.
        #Inside each entry, put a list FOR EACH LAYER. It should be [] for the layer if no mp there. But FOR EACH LAYER.
        #MP is applied >>AT THE INPUT of the layer<<. To use mp to a layer, put a list of [[dsr,dsc,dsz], [strr,strc,strz], [mirrorPad-r,-c,-z], mode] which give the dimensions of the mp window, the stride, how many times to mirror the last slot at each dimension for padding (give 0 for none), the mode (usually 'max' pool). Eg [[2,2,2],[1,1,1]] or [[2,2,2],[2,2,2]] usually.
        #If a pathway is not used (eg subsampled), put an empty list in the first dimension entry.
        mpParamsNorm = [
            [] for layeri in range(len(self.numFMsPerLayerNormal))
        ]  #[[[2,2,2], [1,1,1], [1,1,1], 'MAX'], [],[],[],[],[],[], []], #first pathway
        mpParamsSubs = [
            [] for layeri in range(len(self.numFMsPerLayerSubsampled[0]))
        ] if self.useSubsampledBool else [
        ]  # CAREFUL about the [0]. Only here till this structure is made different per pathway and not pathwayType.
        mpParamsFc = [
            [] for layeri in range(len(self.numFMsInExtraFcs) + 1)
        ]  #FC. This should NEVER be used for segmentation. Possible for classification though.
        self.maxPoolingParamsStructure = [
            mpParamsNorm, mpParamsSubs, mpParamsFc
        ]

        self.softmaxTemperature = 1.0  #Higher temperatures make the probabilities LESS distinctable. Actions have more similar probabilities.
示例#4
0
    def make_cnn_model( self,
                        log,
                        cnnModelName,
                        #=== Model Parameters ===
                        numberOfOutputClasses,
                        numberOfImageChannelsPath1,
                        numberOfImageChannelsPath2,
                        
                        #=== Normal Pathway ===
                        nkerns,
                        kernelDimensions,
                        #=== Subsampled Pathway ===
                        # THESE NEXT TWO, ALONG WITH THE ONES FOR FC, COULD BE PUT IN ONE STRUCTURE WITH NORMAL, EG LIKE kerns = [ [kernsNorm], [kernsSub], [kernsFc]]
                        nkernsSubsampled, # Used to control if secondary pathways: [] if no secondary pathways. Now its the "factors"
                        kernelDimensionsSubsampled,
                        subsampleFactorsPerSubPath, # Controls how many pathways: [] if no secondary pathways. Else, List of lists. One sublist per secondary pathway. Each sublist has 3 ints, the rcz subsampling factors.
                        #=== FC Layers ===
                        fcLayersFMs,
                        kernelDimensionsFirstFcLayer,
                        softmaxTemperature,
                        
                        #=== Other Architectural params ===
                        activationFunc,
                        #---Residual Connections----
                        indicesOfLayersToConnectResidualsInOutput,
                        #--Lower Rank Layer Per Pathway---
                        indicesOfLowerRankLayersPerPathway,
                        ranksOfLowerRankLayersForEachPathway,
                        #---Pooling---
                        maxPoolingParamsStructure,
                        #--- Skip Connections --- #Deprecated, not used/supported
                        convLayersToConnectToFirstFcForMultiscaleFromAllLayerTypes,
                        
                        #===Size of Image Segments ===
                        imagePartDimensionsTraining ,
                        imagePartDimensionsValidation,
                        imagePartDimensionsTesting,
                        
                        #=== Others ===
                        # Dropout
                        dropoutRatesForAllPathways,  # list of sublists, one for each pathway. Each either empty or full with the dropout rates of all the layers in the path.
                        # Initialization
                        convWInitMethod,
                        # Batch Normalization
                        applyBnToInputOfPathways,  # one Boolean flag per pathway type. Placeholder for the FC pathway.
                        movingAvForBnOverXBatches,
                        
                        ):
        
        self.cnnModelName = cnnModelName
        
        # ============= Model Parameters Passed as arguments ================
        self.num_classes = numberOfOutputClasses
        self.numberOfImageChannelsPath1 = numberOfImageChannelsPath1
        self.numberOfImageChannelsPath2 = numberOfImageChannelsPath2
        # === Architecture ===
        self.nkerns = nkerns  # Useless?
        self.nkernsSubsampled = nkernsSubsampled  # Useless?
        self.numSubsPaths = len(subsampleFactorsPerSubPath) # do I want this as attribute? Or function is ok?
        
        # fcLayersFMs???
        self.kernelDimensionsFirstFcLayer = kernelDimensionsFirstFcLayer
        
        # == Other Architectural Params ==
        self.indicesOfLayersToConnectResidualsInOutput = indicesOfLayersToConnectResidualsInOutput
        self.indicesOfLowerRankLayersPerPathway = indicesOfLowerRankLayersPerPathway
        # pooling?

        # == Others ==
        self.dropoutRatesForAllPathways = dropoutRatesForAllPathways
        
        # ======== Calculated Attributes =========
        #This recField CNN should in future be calculated with all non-secondary pathways, ie normal+fc. Use another variable for pathway.recField.
        self.recFieldCnn = calcRecFieldFromKernDimListPerLayerWhenStrides1(kernelDimensions)
        
        #==============================
        rng = np.random.RandomState(seed=None)
        
        ######################
        # BUILD ACTUAL MODEL #
        ######################
        log.print3("...Building the CNN model...")
        
        # Symbolic variables, which stand for the input. Will be loaded by the compiled trainining/val/test function.
        # >>> I should have an input argument. Which, if given None, the below placeholders are created.
        
        if True: # Not given input tensors as arguments
            self._setupInputXTensors()
        else: # Inputs given as argument tensors. Eg in adv from discr or from batcher.
            self._setupInputXTensorsFromGivenArgs(1,2,3,4,5,6) # Placeholder. Todo: Replace with normal arguments, when input tensor is given. Eg adversarial G.

        
        #=======================Make the NORMAL PATHWAY of the CNN=======================
        thisPathway = NormalPathway()
        self.pathways.append(thisPathway)
        thisPathwayType = thisPathway.pType()
        
        inputToPathwayTrain = self._inp_x['train']['x']
        inputToPathwayVal = self._inp_x['val']['x']
        inputToPathwayTest = self._inp_x['test']['x']
        inputToPathwayShapeTrain = [None, numberOfImageChannelsPath1] + imagePartDimensionsTraining
        inputToPathwayShapeVal = [None, numberOfImageChannelsPath1] + imagePartDimensionsValidation
        inputToPathwayShapeTest = [None, numberOfImageChannelsPath1] + imagePartDimensionsTesting
        
        thisPathWayNKerns = nkerns
        thisPathWayKernelDimensions = kernelDimensions
        
        thisPathwayNumOfLayers = len(thisPathWayNKerns)
        thisPathwayUseBnPerLayer = [movingAvForBnOverXBatches > 0] * thisPathwayNumOfLayers
        thisPathwayUseBnPerLayer[0] = applyBnToInputOfPathways[thisPathwayType] if movingAvForBnOverXBatches > 0 else False  # For the 1st layer, ask specific flag.
        
        thisPathwayActivFuncPerLayer = [activationFunc] * thisPathwayNumOfLayers
        thisPathwayActivFuncPerLayer[0] = "linear" if thisPathwayType != pt.FC else activationFunc  # To not apply activation on raw input. -1 is linear activation.
        
        thisPathway.makeLayersOfThisPathwayAndReturnDimensionsOfOutputFM(log,
                                                                         rng,
                                                                         inputToPathwayTrain,
                                                                         inputToPathwayVal,
                                                                         inputToPathwayTest,
                                                                         inputToPathwayShapeTrain,
                                                                         inputToPathwayShapeVal,
                                                                         inputToPathwayShapeTest,
                                                                         
                                                                         thisPathWayNKerns,
                                                                         thisPathWayKernelDimensions,
                                                                         
                                                                         convWInitMethod,
                                                                         thisPathwayUseBnPerLayer,
                                                                         movingAvForBnOverXBatches,
                                                                         thisPathwayActivFuncPerLayer,
                                                                         dropoutRatesForAllPathways[thisPathwayType],
                                                                         
                                                                         maxPoolingParamsStructure[thisPathwayType],
                                                                         
                                                                         indicesOfLowerRankLayersPerPathway[thisPathwayType],
                                                                         ranksOfLowerRankLayersForEachPathway[thisPathwayType],
                                                                         indicesOfLayersToConnectResidualsInOutput[thisPathwayType]
                                                                         )
        
        [dimsOfOutputFrom1stPathwayTrain, dimsOfOutputFrom1stPathwayVal, dimsOfOutputFrom1stPathwayTest] = thisPathway.getShapeOfOutput()
        
        #=======================Make the SUBSAMPLED PATHWAYs of the CNN=============================
        for subpath_i in range(self.numSubsPaths) :
            thisPathway = SubsampledPathway(subsampleFactorsPerSubPath[subpath_i])
            self.pathways.append(thisPathway) # There will be at least an entry as a secondary pathway. But it won't have any layers if it was not actually used.
            thisPathwayType = thisPathway.pType()
            
            inputToPathwayTrain = self._inp_x['train']['x_sub_'+str(subpath_i)]
            inputToPathwayVal = self._inp_x['val']['x_sub_'+str(subpath_i)]
            inputToPathwayTest = self._inp_x['test']['x_sub_'+str(subpath_i)]
            
            thisPathWayNKerns = nkernsSubsampled[subpath_i]
            thisPathWayKernelDimensions = kernelDimensionsSubsampled
            
            thisPathwayNumOfLayers = len(thisPathWayNKerns)
            thisPathwayUseBnPerLayer = [movingAvForBnOverXBatches > 0] * thisPathwayNumOfLayers
            thisPathwayUseBnPerLayer[0] = applyBnToInputOfPathways[thisPathwayType] if movingAvForBnOverXBatches > 0 else False  # For the 1st layer, ask specific flag.
            
            thisPathwayActivFuncPerLayer = [activationFunc] * thisPathwayNumOfLayers
            thisPathwayActivFuncPerLayer[0] = "linear" if thisPathwayType != pt.FC else activationFunc  # To not apply activation on raw input. -1 is linear activation.
            
            inputToPathwayShapeTrain = [None, numberOfImageChannelsPath2] + thisPathway.calcInputRczDimsToProduceOutputFmsOfCompatibleDims(thisPathWayKernelDimensions, dimsOfOutputFrom1stPathwayTrain);
            inputToPathwayShapeVal = [None, numberOfImageChannelsPath2] + thisPathway.calcInputRczDimsToProduceOutputFmsOfCompatibleDims(thisPathWayKernelDimensions, dimsOfOutputFrom1stPathwayVal)
            inputToPathwayShapeTest = [None, numberOfImageChannelsPath2] + thisPathway.calcInputRczDimsToProduceOutputFmsOfCompatibleDims(thisPathWayKernelDimensions, dimsOfOutputFrom1stPathwayTest)
            
            thisPathway.makeLayersOfThisPathwayAndReturnDimensionsOfOutputFM(log,
                                                                     rng,
                                                                     inputToPathwayTrain,
                                                                     inputToPathwayVal,
                                                                     inputToPathwayTest,
                                                                     inputToPathwayShapeTrain,
                                                                     inputToPathwayShapeVal,
                                                                     inputToPathwayShapeTest,
                                                                     thisPathWayNKerns,
                                                                     thisPathWayKernelDimensions,
                                                                     
                                                                     convWInitMethod,
                                                                     thisPathwayUseBnPerLayer,
                                                                     movingAvForBnOverXBatches,
                                                                     thisPathwayActivFuncPerLayer,
                                                                     dropoutRatesForAllPathways[thisPathwayType],
                                                                     
                                                                     maxPoolingParamsStructure[thisPathwayType],
                                                                     
                                                                     indicesOfLowerRankLayersPerPathway[thisPathwayType],
                                                                     ranksOfLowerRankLayersForEachPathway[thisPathwayType],
                                                                     indicesOfLayersToConnectResidualsInOutput[thisPathwayType]
                                                                     )
            
            
            # this creates essentially the "upsampling layer"
            thisPathway.upsampleOutputToNormalRes(upsamplingScheme="repeat",
                                                  shapeToMatchInRczTrain=dimsOfOutputFrom1stPathwayTrain,
                                                  shapeToMatchInRczVal=dimsOfOutputFrom1stPathwayVal,
                                                  shapeToMatchInRczTest=dimsOfOutputFrom1stPathwayTest)
            
            
        #====================================CONCATENATE the output of the 2 cnn-pathways=============================
        inputToFirstFcLayerTrain = None; inputToFirstFcLayerVal = None; inputToFirstFcLayerTest = None; numberOfFmsOfInputToFirstFcLayer = 0
        for path_i in range(len(self.pathways)) :
            [outputNormResOfPathTrain, outputNormResOfPathVal, outputNormResOfPathTest] = self.pathways[path_i].getOutputAtNormalRes()
            [dimsOfOutputNormResOfPathTrain, dimsOfOutputNormResOfPathVal, dimsOfOutputNormResOfPathTest] = self.pathways[path_i].getShapeOfOutputAtNormalRes()
            
            inputToFirstFcLayerTrain =  tf.concat([inputToFirstFcLayerTrain, outputNormResOfPathTrain], axis=1) if path_i != 0 else outputNormResOfPathTrain
            inputToFirstFcLayerVal = tf.concat([inputToFirstFcLayerVal, outputNormResOfPathVal], axis=1) if path_i != 0 else outputNormResOfPathVal
            inputToFirstFcLayerTest = tf.concat([inputToFirstFcLayerTest, outputNormResOfPathTest], axis=1) if path_i != 0 else outputNormResOfPathTest
            numberOfFmsOfInputToFirstFcLayer += dimsOfOutputNormResOfPathTrain[1]
        
        #======================= Make the Fully Connected Layers =======================
        thisPathway = FcPathway()
        self.pathways.append(thisPathway)
        thisPathwayType = thisPathway.pType()
        
        # This is the shape of the kernel in the first FC layer.
        # NOTE: If there is no hidden FC layer, this kernel is used in the Classification layer then.
        # Originally it was 1x1x1 only. The pathways themselves where taking care of the receptive field.
        # However I can now define it larger (eg 3x3x3), in case it helps combining the multiresolution features better/smoother.
        # The convolution is seamless, ie same shape output/input, by mirror padding the input.
        firstFcLayerAfterConcatenationKernelShape = self.kernelDimensionsFirstFcLayer
        voxelsToPadPerDim = [ kernelDim - 1 for kernelDim in firstFcLayerAfterConcatenationKernelShape ]
        log.print3("DEBUG: Shape of the kernel of the first FC layer is : " + str(firstFcLayerAfterConcatenationKernelShape))
        log.print3("DEBUG: Input to the FC Pathway will be padded by that many voxels per dimension: " + str(voxelsToPadPerDim))
        inputToPathwayTrain = padImageWithMirroring(inputToFirstFcLayerTrain, voxelsToPadPerDim)
        inputToPathwayVal = padImageWithMirroring(inputToFirstFcLayerVal, voxelsToPadPerDim)
        inputToPathwayTest = padImageWithMirroring(inputToFirstFcLayerTest, voxelsToPadPerDim)
        inputToPathwayShapeTrain = [None, numberOfFmsOfInputToFirstFcLayer] + dimsOfOutputFrom1stPathwayTrain[2:5]
        inputToPathwayShapeVal = [None, numberOfFmsOfInputToFirstFcLayer] + dimsOfOutputFrom1stPathwayVal[2:5]
        inputToPathwayShapeTest = [None, numberOfFmsOfInputToFirstFcLayer] + dimsOfOutputFrom1stPathwayTest[2:5]
        for rcz_i in range(3) : 
            inputToPathwayShapeTrain[2+rcz_i] += voxelsToPadPerDim[rcz_i]
            inputToPathwayShapeVal[2+rcz_i] += voxelsToPadPerDim[rcz_i]
            inputToPathwayShapeTest[2+rcz_i] += voxelsToPadPerDim[rcz_i]
        
        thisPathWayNKerns = fcLayersFMs + [self.num_classes]
        thisPathWayKernelDimensions = [firstFcLayerAfterConcatenationKernelShape] + [[1, 1, 1]] * (len(thisPathWayNKerns) - 1)
        
        thisPathwayNumOfLayers = len(thisPathWayNKerns)
        thisPathwayUseBnPerLayer = [movingAvForBnOverXBatches > 0] * thisPathwayNumOfLayers
        thisPathwayUseBnPerLayer[0] = applyBnToInputOfPathways[thisPathwayType] if movingAvForBnOverXBatches > 0 else False  # For the 1st layer, ask specific flag.
        
        thisPathwayActivFuncPerLayer = [activationFunc] * thisPathwayNumOfLayers
        thisPathwayActivFuncPerLayer[0] = "linear" if thisPathwayType != pt.FC else activationFunc  # To not apply activation on raw input. -1 is linear activation.
        
        thisPathway.makeLayersOfThisPathwayAndReturnDimensionsOfOutputFM(log,
                                                                         rng,
                                                                         inputToPathwayTrain,
                                                                         inputToPathwayVal,
                                                                         inputToPathwayTest,
                                                                         inputToPathwayShapeTrain,
                                                                         inputToPathwayShapeVal,
                                                                         inputToPathwayShapeTest,
                                                                         
                                                                         thisPathWayNKerns,
                                                                         thisPathWayKernelDimensions,
                                                                         
                                                                         convWInitMethod,
                                                                         thisPathwayUseBnPerLayer,
                                                                         movingAvForBnOverXBatches,
                                                                         thisPathwayActivFuncPerLayer,
                                                                         dropoutRatesForAllPathways[thisPathwayType],
                                                                         
                                                                         maxPoolingParamsStructure[thisPathwayType],
                                                                         
                                                                         indicesOfLowerRankLayersPerPathway[thisPathwayType],
                                                                         ranksOfLowerRankLayersForEachPathway[thisPathwayType],
                                                                         indicesOfLayersToConnectResidualsInOutput[thisPathwayType]
                                                                         )
        
        # =========== Make the final Target Layer (softmax, regression, whatever) ==========
        log.print3("Adding the final Softmax Target layer...")
        
        self.finalTargetLayer = self._getClassificationLayer()
        self.finalTargetLayer.makeLayer(rng, self.getFcPathway().getLayer(-1), softmaxTemperature)
        (self._output_gt_tensor_feeds['train']['y_gt'],
         self._output_gt_tensor_feeds['val']['y_gt']) = self.finalTargetLayer.get_output_gt_tensor_feed()
        
        log.print3("Finished building the CNN's model.")
示例#5
0
 def calcRecFieldOfPathway(self, kernelDimsPerLayer) :
     return calcRecFieldFromKernDimListPerLayerWhenStrides1(kernelDimsPerLayer)