def _build_body(self): # input projection _units = tf.layers.dense(self._features, self.dense_size, kernel_regularizer=tf.nn.l2_loss, kernel_initializer=xav()) if self.attn: attn_scope = "attention_mechanism/{}".format(self.attn.type) with tf.variable_scope(attn_scope): if self.attn.type == 'general': _attn_output = am.general_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) elif self.attn.type == 'bahdanau': _attn_output = am.bahdanau_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) elif self.attn.type == 'cs_general': _attn_output = am.cs_general_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, depth=self.attn.depth, projected_align=self.attn.projected_align) elif self.attn.type == 'cs_bahdanau': _attn_output = am.cs_bahdanau_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, depth=self.attn.depth, projected_align=self.attn.projected_align) elif self.attn.type == 'light_general': _attn_output = am.light_general_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) elif self.attn.type == 'light_bahdanau': _attn_output = am.light_bahdanau_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) else: raise ValueError("wrong value for attention mechanism type") _units = tf.concat([_units, _attn_output], -1) _units = tf_layers.variational_dropout(_units, keep_prob=self._dropout_keep_prob) # recurrent network unit _lstm_cell = tf.nn.rnn_cell.LSTMCell(self.hidden_size) _utter_lengths = tf.to_int32(tf.reduce_sum(self._utterance_mask, axis=-1)) _output, _state = tf.nn.dynamic_rnn(_lstm_cell, _units, time_major=False, initial_state=self._initial_state, sequence_length=_utter_lengths) _output = tf.reshape(_output, (self._batch_size, -1, self.hidden_size)) _output = tf_layers.variational_dropout(_output, keep_prob=self._dropout_keep_prob) # output projection _logits = tf.layers.dense(_output, self.action_size, kernel_regularizer=tf.nn.l2_loss, kernel_initializer=xav(), name='logits') return _logits, _state
def _build_body(self): # input projection _units = tf.layers.dense(self._features, self.dense_size, kernel_regularizer=tf.nn.l2_loss, kernel_initializer=xav()) if self.attn: attn_scope = "attention_mechanism/{}".format(self.attn.type) with tf.variable_scope(attn_scope): if self.attn.type == 'general': _attn_output = am.general_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) elif self.attn.type == 'bahdanau': _attn_output = am.bahdanau_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) elif self.attn.type == 'cs_general': _attn_output = am.cs_general_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, depth=self.attn.depth, projected_align=self.attn.projected_align) elif self.attn.type == 'cs_bahdanau': _attn_output = am.cs_bahdanau_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, depth=self.attn.depth, projected_align=self.attn.projected_align) elif self.attn.type == 'light_general': _attn_output = am.light_general_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) elif self.attn.type == 'light_bahdanau': _attn_output = am.light_bahdanau_attention( self._key, self._emb_context, hidden_size=self.attn.hidden_size, projected_align=self.attn.projected_align) else: raise ValueError("wrong value for attention mechanism type") _units = tf.concat([_units, _attn_output], -1) _units = tf_layers.variational_dropout(_units, keep_prob=self._dropout_keep_prob) # recurrent network unit _lstm_cell = tf.nn.rnn_cell.LSTMCell(self.hidden_size) _utter_lengths = tf.to_int32(tf.reduce_sum(self._utterance_mask, axis=-1)) _output, _state = tf.nn.dynamic_rnn(_lstm_cell, _units, initial_state=self._initial_state, sequence_length=_utter_lengths) # output projection _logits = tf.layers.dense(_output, self.action_size, kernel_regularizer=tf.nn.l2_loss, kernel_initializer=xav(), name='logits') return _logits, _state