def run(): # Prepare MNIST data dataset = dp.datasets.MNIST() x, y = dataset.data(flat=True) x = x.astype(dp.float_) y = y.astype(dp.int_) train_idx, test_idx = dataset.split() x_train = x[train_idx] y_train = y[train_idx] x_test = x[test_idx] y_test = y[test_idx] scaler = dp.UniformScaler(high=255.) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) # Generate image pairs n_pairs = 100000 x1 = np.empty((n_pairs, 28 * 28), dtype=dp.float_) x2 = np.empty_like(x1, dtype=dp.float_) y = np.empty(n_pairs, dtype=dp.int_) n_imgs = x_train.shape[0] n = 0 while n < n_pairs: i = random.randint(0, n_imgs - 1) j = random.randint(0, n_imgs - 1) if i == j: continue x1[n, ...] = x_train[i] x2[n, ...] = x_train[j] if y_train[i] == y_train[j]: y[n] = 1 else: y[n] = 0 n += 1 # Input to network train_input = dp.SupervisedSiameseInput(x1, x2, y, batch_size=128) test_input = dp.SupervisedInput(x_test, y_test) # Setup network net = dp.SiameseNetwork( siamese_layers=[ dp.Dropout(), dp.FullyConnected( n_output=800, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001), ), dp.Activation('relu'), dp.FullyConnected( n_output=800, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001), ), dp.Activation('relu'), dp.FullyConnected( n_output=2, weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001), ), ], loss_layer=dp.ContrastiveLoss(margin=0.5), ) # Train network trainer = dp.StochasticGradientDescent( max_epochs=10, learn_rule=dp.RMSProp(learn_rate=0.001), ) trainer.train(net, train_input) # Visualize feature space feat = net.features(test_input) colors = [ 'tomato', 'lawngreen', 'royalblue', 'gold', 'saddlebrown', 'violet', 'turquoise', 'mediumpurple', 'darkorange', 'darkgray' ] plt.figure() for i in range(10): plt.scatter(feat[y_test == i, 0], feat[y_test == i, 1], s=3, c=colors[i], linewidths=0) plt.legend([str(i) for i in range(10)], scatterpoints=1, markerscale=4) if not os.path.exists('mnist'): os.mkdirs('mnist') plt.savefig(os.path.join('mnist', 'siamese_dists.png'), dpi=200)
batch_size = 128 train_feed = dp.SupervisedSiameseFeed(x1, x2, y, batch_size=batch_size) # Setup network w_gain = 1.5 w_decay = 1e-4 net = dp.SiameseNetwork( siamese_layers=[ dp.Affine( n_out=1024, weights=dp.Parameter(dp.AutoFiller(w_gain), weight_decay=w_decay), ), dp.ReLU(), dp.Affine( n_out=1024, weights=dp.Parameter(dp.AutoFiller(w_gain), weight_decay=w_decay), ), dp.ReLU(), dp.Affine( n_out=2, weights=dp.Parameter(dp.AutoFiller(w_gain)), ), ], loss=dp.ContrastiveLoss(margin=1.0), ) # Train network learn_rate = 0.01 / batch_size learn_rule = dp.RMSProp(learn_rate) trainer = dp.GradientDescent(net, train_feed, learn_rule) trainer.train_epochs(n_epochs=15)
# Prepare network inputs train_input = dp.SupervisedSiameseInput(x1, x2, y, batch_size=128) # Setup network w_gain = 1.5 w_decay = 1e-4 net = dp.SiameseNetwork( siamese_layers=[ dp.FullyConnected( n_out=1024, weights=dp.Parameter(dp.AutoFiller(w_gain), weight_decay=w_decay), ), dp.Activation('relu'), dp.FullyConnected( n_out=1024, weights=dp.Parameter(dp.AutoFiller(w_gain), weight_decay=w_decay), ), dp.Activation('relu'), dp.FullyConnected( n_out=2, weights=dp.Parameter(dp.AutoFiller(w_gain)), ), ], loss=dp.ContrastiveLoss(margin=1.0), ) # Train network trainer = dp.StochasticGradientDescent( max_epochs=15, learn_rule=dp.RMSProp(learn_rate=0.01), )