示例#1
0
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(GRID, self).__init__()
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.dataset_url = 'http://personal.ie.cuhk.edu.hk/~ccloy/files/datasets/underground_reid.zip'
        self.probe_path = osp.join(self.dataset_dir, 'underground_reid', 'probe')
        self.gallery_path = osp.join(self.dataset_dir, 'underground_reid', 'gallery')
        self.split_mat_path = osp.join(self.dataset_dir, 'underground_reid', 'features_and_partitions.mat')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')

        self._download_data()
        self._check_before_run()

        self._prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
        split = splits[split_id]

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]
        
        num_train_pids = split['num_train_pids']
        num_query_pids = split['num_query_pids']
        num_gallery_pids = split['num_gallery_pids']
        
        num_train_imgs = len(train)
        num_query_imgs = len(query)
        num_gallery_imgs = len(gallery)

        num_total_pids = num_train_pids + num_gallery_pids
        num_total_imgs = num_train_imgs + num_query_imgs + num_gallery_imgs

        if verbose:
            print("=> GRID loaded")
            print("Dataset statistics:")
            print("  ------------------------------")
            print("  subset   | # ids | # images")
            print("  ------------------------------")
            print("  train    | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
            print("  query    | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
            print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
            print("  ------------------------------")
            print("  total    | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
            print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
示例#2
0
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(VIPeR, self).__init__()
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.dataset_url = 'http://users.soe.ucsc.edu/~manduchi/VIPeR.v1.0.zip'
        self.cam_a_path = osp.join(self.dataset_dir, 'VIPeR', 'cam_a')
        self.cam_b_path = osp.join(self.dataset_dir, 'VIPeR', 'cam_b')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')

        self._download_data()
        self._check_before_run()
        
        self._prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
        split = splits[split_id]

        train = split['train']
        query = split['query'] # query and gallery share the same images
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]
        
        num_train_pids = split['num_train_pids']
        num_query_pids = split['num_query_pids']
        num_gallery_pids = split['num_gallery_pids']
        
        num_train_imgs = len(train)
        num_query_imgs = len(query)
        num_gallery_imgs = len(gallery)

        num_total_pids = num_train_pids + num_query_pids
        num_total_imgs = num_train_imgs + num_query_imgs

        if verbose:
            print("=> VIPeR loaded")
            print("Dataset statistics:")
            print("  ------------------------------")
            print("  subset   | # ids | # images")
            print("  ------------------------------")
            print("  train    | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
            print("  query    | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
            print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
            print("  ------------------------------")
            print("  total    | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
            print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
    def __init__(self, root='data', split_id=0, min_seq_len=0, verbose=True, **kwargs):
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.split_path = osp.join(self.dataset_dir, 'splits_prid2011.json')
        self.cam_a_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_a')
        self.cam_b_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_b')

        self._check_before_run()
        splits = read_json(self.split_path)
        if split_id >=  len(splits):
            raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
        split = splits[split_id]
        train_dirs, test_dirs = split['train'], split['test']
        print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs)))

        train, num_train_tracklets, num_train_pids, num_imgs_train = \
          self._process_data(train_dirs, cam1=True, cam2=True)
        query, num_query_tracklets, num_query_pids, num_imgs_query = \
          self._process_data(test_dirs, cam1=True, cam2=False)
        gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \
          self._process_data(test_dirs, cam1=False, cam2=True)

        num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery
        min_num = np.min(num_imgs_per_tracklet)
        max_num = np.max(num_imgs_per_tracklet)
        avg_num = np.mean(num_imgs_per_tracklet)

        num_total_pids = num_train_pids + num_query_pids
        num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets

        if verbose:
            print("=> PRID2011 loaded")
            print("Dataset statistics:")
            print("  ------------------------------")
            print("  subset   | # ids | # tracklets")
            print("  ------------------------------")
            print("  train    | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets))
            print("  query    | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets))
            print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets))
            print("  ------------------------------")
            print("  total    | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets))
            print("  number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num))
            print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
示例#4
0
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(iLIDS, self).__init__()
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.dataset_url = 'http://www.eecs.qmul.ac.uk/~xiatian/iLIDS-VID/iLIDS-VID.tar'
        self.data_dir = osp.join(self.dataset_dir, 'i-LIDS-VID')
        self.split_dir = osp.join(self.dataset_dir, 'train-test people splits')
        self.split_mat_path = osp.join(self.split_dir, 'train_test_splits_ilidsvid.mat')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')
        self.cam_1_path = osp.join(self.dataset_dir, 'i-LIDS-VID/images/cam1') # differ from video
        self.cam_2_path = osp.join(self.dataset_dir, 'i-LIDS-VID/images/cam2')

        self._download_data()
        self._check_before_run()

        self._prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
        split = splits[split_id]
        train_dirs, test_dirs = split['train'], split['test']
        print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs)))

        train, num_train_imgs, num_train_pids = self._process_data(train_dirs, cam1=True, cam2=True)
        query, num_query_imgs, num_query_pids = self._process_data(test_dirs, cam1=True, cam2=False)
        gallery, num_gallery_imgs, num_gallery_pids = self._process_data(test_dirs, cam1=False, cam2=True)

        num_total_pids = num_train_pids + num_query_pids
        num_total_imgs = num_train_imgs + num_query_imgs

        if verbose:
            print("=> iLIDS (single-shot) loaded")
            print("Dataset statistics:")
            print("  ------------------------------")
            print("  subset   | # ids | # images")
            print("  ------------------------------")
            print("  train    | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
            print("  query    | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
            print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
            print("  ------------------------------")
            print("  total    | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
            print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
示例#5
0
    def _process_dir(self, dir_path, json_path, relabel):
        if osp.exists(json_path):
            print("=> {} generated before, awesome!".format(json_path))
            split = read_json(json_path)
            return split['tracklets'], split['num_tracklets'], split[
                'num_pids'], split['num_imgs_per_tracklet']

        print(
            "=> Automatically generating split (might take a while for the first time, have a coffe)"
        )
        pdirs = glob.glob(osp.join(dir_path, '*'))  # avoid .DS_Store
        print("Processing {} with {} person identities".format(
            dir_path, len(pdirs)))

        pid_container = set()
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            pid_container.add(pid)
        pid2label = {pid: label for label, pid in enumerate(pid_container)}

        tracklets = []
        num_imgs_per_tracklet = []
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            if relabel: pid = pid2label[pid]
            tdirs = glob.glob(osp.join(pdir, '*'))
            for tdir in tdirs:
                raw_img_paths = glob.glob(osp.join(tdir, '*.jpg'))
                num_imgs = len(raw_img_paths)

                if num_imgs < self.min_seq_len:
                    continue

                num_imgs_per_tracklet.append(num_imgs)
                img_paths = []
                for img_idx in range(num_imgs):
                    # some tracklet starts from 0002 instead of 0001
                    img_idx_name = 'F' + str(img_idx + 1).zfill(4)
                    res = glob.glob(
                        osp.join(tdir, '*' + img_idx_name + '*.jpg'))
                    if len(res) == 0:
                        print(
                            "Warn: index name {} in {} is missing, jump to next"
                            .format(img_idx_name, tdir))
                        continue
                    img_paths.append(res[0])
                img_name = osp.basename(img_paths[0])
                if img_name.find('_') == -1:
                    # old naming format: 0001C6F0099X30823.jpg
                    camid = int(img_name[5]) - 1
                else:
                    # new naming format: 0001_C6_F0099_X30823.jpg
                    camid = int(img_name[6]) - 1
                img_paths = tuple(img_paths)
                tracklets.append((img_paths, pid, camid))

        num_pids = len(pid_container)
        num_tracklets = len(tracklets)

        print("Saving split to {}".format(json_path))
        split_dict = {
            'tracklets': tracklets,
            'num_tracklets': num_tracklets,
            'num_pids': num_pids,
            'num_imgs_per_tracklet': num_imgs_per_tracklet,
        }
        write_json(split_dict, json_path)

        return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.dataset_url = 'http://www.eecs.qmul.ac.uk/~xiatian/iLIDS-VID/iLIDS-VID.tar'
        self.data_dir = osp.join(self.dataset_dir, 'i-LIDS-VID')
        self.split_dir = osp.join(self.dataset_dir, 'train-test people splits')
        self.split_mat_path = osp.join(self.split_dir,
                                       'train_test_splits_ilidsvid.mat')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')
        self.cam_1_path = osp.join(self.dataset_dir,
                                   'i-LIDS-VID/sequences/cam1')
        self.cam_2_path = osp.join(self.dataset_dir,
                                   'i-LIDS-VID/sequences/cam2')

        self._download_data()
        self._check_before_run()

        self._prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                "split_id exceeds range, received {}, but expected between 0 and {}"
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]
        train_dirs, test_dirs = split['train'], split['test']
        print("# train identites: {}, # test identites {}".format(
            len(train_dirs), len(test_dirs)))

        train, num_train_tracklets, num_train_pids, num_imgs_train = \
          self._process_data(train_dirs, cam1=True, cam2=True)
        query, num_query_tracklets, num_query_pids, num_imgs_query = \
          self._process_data(test_dirs, cam1=True, cam2=False)
        gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \
          self._process_data(test_dirs, cam1=False, cam2=True)

        num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery
        min_num = np.min(num_imgs_per_tracklet)
        max_num = np.max(num_imgs_per_tracklet)
        avg_num = np.mean(num_imgs_per_tracklet)

        num_total_pids = num_train_pids + num_query_pids
        num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets

        if verbose:
            print("=> iLIDS-VID loaded")
            print("Dataset statistics:")
            print("  ------------------------------")
            print("  subset   | # ids | # tracklets")
            print("  ------------------------------")
            print("  train    | {:5d} | {:8d}".format(num_train_pids,
                                                      num_train_tracklets))
            print("  query    | {:5d} | {:8d}".format(num_query_pids,
                                                      num_query_tracklets))
            print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids,
                                                      num_gallery_tracklets))
            print("  ------------------------------")
            print("  total    | {:5d} | {:8d}".format(num_total_pids,
                                                      num_total_tracklets))
            print("  number of images per tracklet: {} ~ {}, average {:.1f}".
                  format(min_num, max_num, avg_num))
            print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
示例#7
0
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(CUHK01, self).__init__()
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.zip_path = osp.join(self.dataset_dir, 'CUHK01.zip')
        self.campus_dir = osp.join(self.dataset_dir, 'campus')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')

        self._extract_file()
        self._check_before_run()

        self._prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                "split_id exceeds range, received {}, but expected between 0 and {}"
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]

        num_train_pids = split['num_train_pids']
        num_query_pids = split['num_query_pids']
        num_gallery_pids = split['num_gallery_pids']

        num_train_imgs = len(train)
        num_query_imgs = len(query)
        num_gallery_imgs = len(gallery)

        num_total_pids = num_train_pids + num_query_pids
        num_total_imgs = num_train_imgs + num_query_imgs

        if verbose:
            print("=> CUHK01 loaded")
            print("Dataset statistics:")
            print("  ------------------------------")
            print("  subset   | # ids | # images")
            print("  ------------------------------")
            print("  train    | {:5d} | {:8d}".format(num_train_pids,
                                                      num_train_imgs))
            print("  query    | {:5d} | {:8d}".format(num_query_pids,
                                                      num_query_imgs))
            print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids,
                                                      num_gallery_imgs))
            print("  ------------------------------")
            print("  total    | {:5d} | {:8d}".format(num_total_pids,
                                                      num_total_imgs))
            print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
    def __init__(self,
                 root='data',
                 split_id=0,
                 min_seq_len=0,
                 verbose=True,
                 **kwargs):
        super(PRID450S, self).__init__()
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.dataset_url = 'https://files.icg.tugraz.at/f/8c709245bb/?raw=1'
        self.split_path = osp.join(self.dataset_dir, 'splits.json')
        self.cam_a_path = osp.join(self.dataset_dir, 'cam_a')
        self.cam_b_path = osp.join(self.dataset_dir, 'cam_b')

        self._download_data()
        self._check_before_run()

        self._prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                "split_id exceeds range, received {}, but expected between 0 and {}"
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]

        num_train_pids = split['num_train_pids']
        num_query_pids = split['num_query_pids']
        num_gallery_pids = split['num_gallery_pids']

        num_train_imgs = len(train)
        num_query_imgs = len(query)
        num_gallery_imgs = len(gallery)

        num_total_pids = num_train_pids + num_query_pids
        num_total_imgs = num_train_imgs + num_query_imgs

        if verbose:
            print("=> PRID450S loaded")
            print("Dataset statistics:")
            print("  ------------------------------")
            print("  subset   | # ids | # images")
            print("  ------------------------------")
            print("  train    | {:5d} | {:8d}".format(num_train_pids,
                                                      num_train_imgs))
            print("  query    | {:5d} | {:8d}".format(num_query_pids,
                                                      num_query_imgs))
            print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids,
                                                      num_gallery_imgs))
            print("  ------------------------------")
            print("  total    | {:5d} | {:8d}".format(num_total_pids,
                                                      num_total_imgs))
            print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids