def test_hetero_graph_basics(self): G = generate_simple_hete_graph() hete = HeteroGraph(G) hete = HeteroGraph(node_feature=hete.node_feature, node_label=hete.node_label, edge_feature=hete.edge_feature, edge_label=hete.edge_label, edge_index=hete.edge_index, directed=True) self.assertEqual(hete.num_node_features('n1'), 10) self.assertEqual(hete.num_node_features('n2'), 12) self.assertEqual(hete.num_edge_features(('n1', 'e1', 'n1')), 8) self.assertEqual(hete.num_edge_features(('n1', 'e2', 'n2')), 12) self.assertEqual(hete.num_nodes('n1'), 4) self.assertEqual(hete.num_nodes('n2'), 5) self.assertEqual(len(hete.node_types), 2) self.assertEqual(len(hete.edge_types), 2) message_types = hete.message_types self.assertEqual(len(message_types), 7) self.assertEqual(hete.num_node_labels('n1'), 2) self.assertEqual(hete.num_node_labels('n2'), 2) self.assertEqual(hete.num_edge_labels(('n1', 'e1', 'n1')), 2) self.assertEqual(hete.num_edge_labels(('n1', 'e2', 'n2')), 2) self.assertEqual(hete.num_edges(message_types[0]), 3) self.assertEqual(len(hete.node_label_index), 2)
f"test micro {round(accs[2][0] * 100, 2)}%, test macro {round(accs[2][1] * 100, 2)}%" ) best_accs, _, _ = test(best_model, hetero_graph, [train_idx, val_idx, test_idx]) print( f"Best model: " f"train micro {round(best_accs[0][0] * 100, 2)}%, train macro {round(best_accs[0][1] * 100, 2)}%, " f"valid micro {round(best_accs[1][0] * 100, 2)}%, valid macro {round(best_accs[1][1] * 100, 2)}%, " f"test micro {round(best_accs[2][0] * 100, 2)}%, test macro {round(best_accs[2][1] * 100, 2)}%" ) # Attention aggregation best_model = None best_val = 0 output_size = hetero_graph.num_node_labels('paper') model = HeteroGNN(hetero_graph, args, aggr="attn").to(args.device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) for epoch in range(args.epochs): loss = train(model, optimizer, hetero_graph, train_idx) accs, best_model, best_val = test(model, hetero_graph, [train_idx, val_idx, test_idx], best_model, best_val) print( f"Epoch {epoch + 1}: loss {round(loss, 5)}, " f"train micro {round(accs[0][0] * 100, 2)}%, train macro {round(accs[0][1] * 100, 2)}%, " f"valid micro {round(accs[1][0] * 100, 2)}%, valid macro {round(accs[1][1] * 100, 2)}%, " f"test micro {round(accs[2][0] * 100, 2)}%, test macro {round(accs[2][1] * 100, 2)}%"