示例#1
0
def _create_topk_unique(inputs, k):
    """Creates the top k values in sorted order with indices."""
    height = inputs.shape[0]
    width = inputs.shape[1]
    neg_inf_r0 = tf.constant(-np.inf, dtype=tf.float32)
    ones = tf.ones([height, width], dtype=tf.float32)
    neg_inf_r2 = ones * neg_inf_r0
    inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs)

    tmp = inputs
    topk_r2 = tf.zeros([height, k], dtype=tf.float32)
    for i in range(k):
        kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True)
        k_mask = tf.tile(
            tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0),
            [height, 1])
        topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]),
                           topk_r2)
        ge_r2 = tf.greater_equal(inputs,
                                 tf.tile(kth_order_statistic, [1, width]))
        tmp = tf.where(ge_r2, neg_inf_r2, inputs)

    log2_ceiling = int(math.ceil(math.log(float(int(width)), 2)))
    next_power_of_two = 1 << log2_ceiling
    count_mask = next_power_of_two - 1
    mask_r0 = tf.constant(count_mask)
    mask_r2 = tf.fill([height, k], mask_r0)
    topk_r2_s32 = tf.bitcast(topk_r2, tf.int32)
    topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2)
    return topk_r2, topk_indices_r2
示例#2
0
文件: utils.py 项目: youisbaby/delta
def split_one_doc_to_true_len_sens(doc_t, split_token, padding_token,
                                   max_doc_len, max_sen_len):
    """
  Split a document to sentences with true sentence lengths.
  doc_t: [doc_word_len]
  out_t: [max_doc_len, max_sen_len]
  """
    if len(doc_t.get_shape()) == 1:
        split_token_index = tf.squeeze(tf.where(tf.equal(doc_t, split_token)),
                                       axis=1)
        split_token_index.set_shape([None])
        split_len_part_1 = split_token_index[:1] + 1
        split_len_part_2 = split_token_index[1:] - split_token_index[:-1]
        split_lens = tf.concat([split_len_part_1, split_len_part_2], axis=0)
        split_lens = cut_or_padding(split_lens,
                                    max_doc_len,
                                    padding_token=padding_token)
        new_doc_len = tf.reduce_sum(split_lens)
        splited_sentences = tf.split(doc_t[:new_doc_len], split_lens)
        splited_sentences = [
            cut_or_padding(s, max_sen_len) for s in splited_sentences
        ]
        out_t = tf.stack(splited_sentences)
        padding_tokens = tf.multiply(tf.ones_like(out_t, dtype=tf.int32),
                                     padding_token)
        out_t = tf.where(tf.equal(out_t, split_token), padding_tokens, out_t)
        return out_t

    raise ValueError("doc_t should be a tensor with rank 1.")
示例#3
0
def masked_softmax(logits, mask, axis):
    """Compute softmax with input mask."""
    e_logits = tf.exp(logits)
    masked_e = tf.multiply(e_logits, mask)
    sum_masked_e = tf.reduce_sum(masked_e, axis, keep_dims=True)
    ones = tf.ones_like(sum_masked_e)
    # pay attention to a situation that if len of mask is zero,
    # denominator should be set to 1
    sum_masked_e_safe = tf.where(tf.equal(sum_masked_e, 0), ones, sum_masked_e)
    return masked_e / sum_masked_e_safe
示例#4
0
def labels_blankid_to_last(labels, blank_index, num_class=None):
  ''' Change the value of blank_label elements from blank_index to num_class - 1'''
  assert num_class is not None, 'The num_class should not be None!'

  labels = transform_preprocess(
      labels=labels, blank_index=blank_index, num_class=num_class)

  labels_values = labels.values
  labels_num_class = tf.zeros_like(labels_values, dtype=tf.int32) + num_class
  labels_values_change_blank = tf.where(
      tf.equal(labels_values, blank_index), labels_num_class, labels_values)
  labels_values = tf.where(labels_values_change_blank < blank_index,
                           labels_values_change_blank,
                           labels_values_change_blank - 1)

  labels = tf.SparseTensor(
      indices=labels.indices,
      values=labels_values,
      dense_shape=labels.dense_shape)
  return labels
示例#5
0
文件: utils.py 项目: youisbaby/delta
def compute_sen_lens(inputs, padding_token=0):
    """
  Count how many words in a sentence.
  inputs: [..., time_steps]
  sen_lens: [...]
  """
    x_binary = tf.cast(tf.not_equal(inputs, padding_token), tf.int32)
    sen_lens = tf.reduce_sum(x_binary, axis=-1)
    ones = tf.ones_like(sen_lens)
    sen_lens = tf.where(tf.equal(sen_lens, utils.PAD_IDX), x=ones, y=sen_lens)
    return sen_lens
示例#6
0
  def compute_lens(inputs, max_len):
    """count sequence length.
    input: [batch_size, max_len]
    lens: [batch_size]
    """

    x_binary = tf.cast(tf.cast(tf.reverse(inputs, axis=[1]), tf.bool), tf.int32)
    lens = max_len - tf.argmax(x_binary, axis=1, output_type=tf.int32)

    zeros = tf.zeros_like(lens, dtype=tf.int32)
    x_sum = tf.reduce_sum(inputs, axis=1)
    sen_lens = tf.where(tf.equal(x_sum, 0), zeros, lens)
    return sen_lens
示例#7
0
def labels_last_to_blankid(labels, blank_index, num_class=None):
  ''' Change the value of blank_label elements from num_classes - 1 to blank_index,
      after removing blank_index by decoder. '''
  labels = transform_preprocess(
      labels=labels, blank_index=blank_index, num_class=num_class)

  labels_values = labels.values
  labels_change_blank_id = tf.where(labels_values >= blank_index,
                                    labels_values + 1, labels_values)

  labels = tf.SparseTensor(
      indices=labels.indices,
      values=labels_change_blank_id,
      dense_shape=labels.dense_shape)

  return labels
示例#8
0
def transform_preprocess(labels=None, blank_index=None, num_class=None):
  ''' Ensure that the value of blank_index is in a reasonable range,
      and transform the DenseTensor labels to a SparseTensor '''
  if blank_index is None or blank_index < 0:
    raise ValueError('blank_index must be greater than or equal to zero')

  if not num_class is None and blank_index > (num_class - 1):
    raise ValueError('blank_index must be less than or equal to num_class - 1')

  if labels is None:
    return None

  if not isinstance(labels, tf.SparseTensor):
    labels = tf.cast(labels, tf.int32)
    labels_idx = tf.where(tf.not_equal(labels, 0))
    labels_values = tf.gather_nd(labels, labels_idx)
    labels_shape = tf.cast(tf.shape(labels), dtype=tf.int64)
    labels = tf.SparseTensor(
        indices=labels_idx, values=labels_values, dense_shape=labels_shape)

  return labels
示例#9
0
def _create_make_unique(inputs):
    """Replaces the lower bits of each element with iota."""
    if inputs.shape.ndims != 2:
        raise ValueError("Input of top_k_with_unique must be rank-2 "
                         "but got: %s" % inputs.shape)

    height = inputs.shape[0]
    width = inputs.shape[1]
    zeros = tf.zeros([height, width], dtype=tf.int32)

    log2_ceiling = int(math.ceil(math.log(int(width), 2)))
    next_power_of_two = 1 << log2_ceiling
    count_mask = ~(next_power_of_two - 1)
    count_mask_r0 = tf.constant(count_mask)
    count_mask_r2 = tf.fill([height, width], count_mask_r0)

    smallest_normal = 1 << 23
    smallest_normal_r0 = tf.constant(smallest_normal, dtype=tf.int32)
    smallest_normal_r2 = tf.fill([height, width], smallest_normal_r0)

    low_bit_mask = ~(1 << 31)
    low_bit_mask_r0 = tf.constant(low_bit_mask, dtype=tf.int32)
    low_bit_mask_r2 = tf.fill([height, width], low_bit_mask_r0)

    iota = tf.tile(tf.expand_dims(tf.range(width, dtype=tf.int32), 0),
                   [height, 1])

    input_r2 = tf.bitcast(inputs, tf.int32)
    abs_r2 = tf.bitwise.bitwise_and(input_r2, low_bit_mask_r2)
    if_zero_r2 = tf.equal(abs_r2, zeros)
    smallest_normal_preserving_sign_r2 = tf.bitwise.bitwise_or(
        input_r2, smallest_normal_r2)
    input_no_zeros_r2 = tf.where(if_zero_r2,
                                 smallest_normal_preserving_sign_r2, input_r2)

    and_r2 = tf.bitwise.bitwise_and(input_no_zeros_r2, count_mask_r2)
    or_r2 = tf.bitwise.bitwise_or(and_r2, iota)
    return tf.bitcast(or_r2, tf.float32)
示例#10
0
    def beam_search(symbols_to_logits_fn,
                    initial_ids,
                    beam_size,
                    decode_length,
                    vocab_size,
                    alpha,
                    eos_id,
                    states=None,
                    stop_early=True,
                    INF=1. * 1e20):
        """Beam search with length penalties."""
        batch_size = utils.shape_list(initial_ids)[0]

        initial_log_probs = tf.constant([[0.] + [-INF] * (beam_size - 1)])
        # (batch_size, beam_size)
        alive_log_probs = tf.tile(initial_log_probs, [batch_size, 1])

        alive_seq = utils.expand_to_beam_size(initial_ids, beam_size)
        # (batch_size, beam_size, 1)
        alive_seq = tf.expand_dims(alive_seq, axis=2)
        if states:
            states = nest.map_structure(
                lambda state: utils.expand_to_beam_size(state, beam_size),
                states)
        else:
            states = {}

        # (batch_size, beam_size, 1)
        finished_seq = tf.zeros(utils.shape_list(alive_seq), tf.int32)
        # (batch_size, beam_size)
        finished_scores = tf.ones([batch_size, beam_size]) * -INF
        # (batch_size, beam_size)
        finished_flags = tf.zeros([batch_size, beam_size], tf.bool)

        def grow_finished(finished_seq, finished_scores, finished_flags,
                          curr_seq, curr_scores, curr_finished):
            """
        Given sequences and scores from finished sequence and current finished sequence
        , will gather the top k=beam size sequences to update finished seq.
      """
            # padding zero for finished seq
            finished_seq = tf.concat(
                [finished_seq,
                 tf.zeros([batch_size, beam_size, 1], tf.int32)],
                axis=2)

            # mask unfinished curr seq
            curr_scores += (1. - tf.to_float(curr_finished)) * -INF

            # concatenating the sequences and scores along beam axis
            # (batch_size, 2xbeam_size, seq_len)
            curr_finished_seq = tf.concat([finished_seq, curr_seq], axis=1)
            curr_finished_scores = tf.concat([finished_scores, curr_scores],
                                             axis=1)
            curr_finished_flags = tf.concat([finished_flags, curr_finished],
                                            axis=1)
            return utils.compute_topk_scores_and_seq(
                curr_finished_seq, curr_finished_scores, curr_finished_scores,
                curr_finished_flags, beam_size, batch_size, "grow_finished")

        def grow_alive(curr_seq, curr_scores, curr_log_probs, curr_finished,
                       states):
            """Given sequences and scores, will gather the top k=beam size sequences."""
            curr_scores += tf.to_float(curr_finished) * -INF
            return utils.compute_topk_scores_and_seq(curr_seq, curr_scores,
                                                     curr_log_probs,
                                                     curr_finished, beam_size,
                                                     batch_size, "grow_alive",
                                                     states)

        def grow_topk(i, alive_seq, alive_log_probs, states):
            """Inner beam search loop."""
            flat_ids = tf.reshape(alive_seq, [batch_size * beam_size, -1])

            # (batch_size * beam_size, decoded_length)
            if states:
                flat_states = nest.map_structure(utils.merge_beam_dim, states)
                flat_logits, flat_states = symbols_to_logits_fn(
                    flat_ids, i, flat_states)
                states = nest.map_structure(
                    lambda t: utils.unmerge_beam_dim(t, batch_size, beam_size),
                    flat_states)
            else:
                flat_logits = symbols_to_logits_fn(flat_ids)

            logits = tf.reshape(flat_logits, [batch_size, beam_size, -1])
            candidate_log_probs = utils.log_prob_from_logits(logits)
            log_probs = candidate_log_probs + tf.expand_dims(alive_log_probs,
                                                             axis=2)

            length_penalty = tf.pow(((5. + tf.to_float(i + 1)) / 6.), alpha)

            curr_scores = log_probs / length_penalty
            flat_curr_scores = tf.reshape(curr_scores,
                                          [-1, beam_size * vocab_size])

            topk_scores, topk_ids = tf.nn.top_k(flat_curr_scores,
                                                k=beam_size * 2)
            topk_log_probs = topk_scores * length_penalty

            topk_beam_index = topk_ids // vocab_size
            topk_ids %= vocab_size  # Unflatten the ids
            batch_pos = utils.compute_batch_indices(batch_size, beam_size * 2)
            topk_coordinates = tf.stack([batch_pos, topk_beam_index], axis=2)

            topk_seq = tf.gather_nd(alive_seq, topk_coordinates)
            if states:
                states = nest.map_structure(
                    lambda state: tf.gather_nd(state, topk_coordinates),
                    states)
            topk_seq = tf.concat(
                [topk_seq, tf.expand_dims(topk_ids, axis=2)], axis=2)

            topk_finished = tf.equal(topk_ids, eos_id)

            return topk_seq, topk_log_probs, topk_scores, topk_finished, states

        def inner_loop(i, alive_seq, alive_log_probs, finished_seq,
                       finished_scores, finished_flags, states):
            """Inner beam search loop."""
            topk_seq, topk_log_probs, topk_scores, topk_finished, states = grow_topk(
                i, alive_seq, alive_log_probs, states)
            alive_seq, alive_log_probs, _, states = grow_alive(
                topk_seq, topk_scores, topk_log_probs, topk_finished, states)
            finished_seq, finished_scores, finished_flags, _ = grow_finished(
                finished_seq, finished_scores, finished_flags, topk_seq,
                topk_scores, topk_finished)

            return (i + 1, alive_seq, alive_log_probs, finished_seq,
                    finished_scores, finished_flags, states)

        def _is_finished(i, unused_alive_seq, alive_log_probs,
                         unused_finished_seq, finished_scores,
                         unused_finished_in_finished, unused_states):
            """Checking termination condition.
      """
            max_length_penalty = tf.pow(
                ((5. + tf.to_float(decode_length)) / 6.), alpha)
            lower_bound_alive_scores = alive_log_probs[:,
                                                       0] / max_length_penalty

            if not stop_early:
                lowest_score_of_finished_in_finished = tf.reduce_min(
                    finished_scores)
            else:
                lowest_score_of_finished_in_finished = tf.reduce_max(
                    finished_scores, axis=1)

            bound_is_met = tf.reduce_all(
                tf.greater(lowest_score_of_finished_in_finished,
                           lower_bound_alive_scores))

            return tf.logical_and(tf.less(i, decode_length),
                                  tf.logical_not(bound_is_met))

        inner_shape = tf.TensorShape([None, None, None])

        state_struc = nest.map_structure(utils.get_state_shape_invariants,
                                         states)
        (_, alive_seq, alive_log_probs, finished_seq, finished_scores,
         finished_flags, states) = tf.while_loop(
             _is_finished,
             inner_loop, [
                 tf.constant(0), alive_seq, alive_log_probs, finished_seq,
                 finished_scores, finished_flags, states
             ],
             shape_invariants=[
                 tf.TensorShape([]), inner_shape,
                 alive_log_probs.get_shape(), inner_shape,
                 finished_scores.get_shape(),
                 finished_flags.get_shape(), state_struc
             ],
             parallel_iterations=1,
             back_prop=False)

        alive_seq.set_shape((None, beam_size, None))
        finished_seq.set_shape((None, beam_size, None))
        finished_seq = tf.where(tf.reduce_any(finished_flags, 1), finished_seq,
                                alive_seq)
        finished_scores = tf.where(tf.reduce_any(finished_flags, 1),
                                   finished_scores, alive_log_probs)
        return finished_seq, finished_scores, states
示例#11
0
def arcface_loss(embedding,
                 labels,
                 out_num,
                 weights=None,
                 s=64.,
                 m=0.5,
                 limit_to_pi=True):
    '''
  https://github.com/auroua/InsightFace_TF/blob/master/losses/face_losses.py
  :param embedding: the input embedding vectors
  :param labels:  the input labels, the shape should be eg: (batch_size, 1)
  :param s: scalar value default is 64
  :param out_num: output class num
  :param weights: a tf.variable with shape (embedding.shape[-1], out_num)
                  or None to make a new one internally. default = None
  :param m: the margin value, default is 0.5
  :return: the final cacualted output, this output is send into the tf.nn.softmax directly
  '''
    cos_m = math.cos(m)
    sin_m = math.sin(m)
    mm = sin_m * m  # issue 1
    threshold = math.cos(math.pi - m)
    with tf.variable_scope('arcface_loss'):
        # inputs and weights norm
        embedding_norm = tf.norm(embedding, axis=1, keep_dims=True)
        embedding = tf.div(embedding, embedding_norm, name='norm_embedding')
        if weights is None:
            weights = tf.get_variable(
                name='weights',
                shape=[embedding.shape[-1].value, out_num],
                initializer=tf.initializer.glorot_unifrom())
        weights_norm = tf.norm(weights, axis=0, keep_dims=True)
        weights = tf.div(weights, weights_norm, name='norm_weights')
        # cos(theta+m)
        cos_t = tf.matmul(embedding, weights, name='cos_t')
        cos_t2 = tf.square(cos_t, name='cos_2')
        sin_t2 = tf.subtract(1., cos_t2, name='sin_2')
        sin_t = tf.sqrt(sin_t2, name='sin_t')
        cos_mt = s * tf.subtract(tf.multiply(cos_t, cos_m),
                                 tf.multiply(sin_t, sin_m),
                                 name='cos_mt')

        if limit_to_pi:
            # this condition controls the theta+m should in range [0, pi]
            #      0<=theta+m<=pi
            #     -m<=theta<=pi-m
            cond_v = cos_t - threshold
            cond = tf.cast(tf.nn.relu(cond_v, name='if_else'), dtype=tf.bool)

            keep_val = s * (cos_t - mm)
            cos_mt_temp = tf.where(cond, cos_mt, keep_val)
        else:
            cos_mt_temp = cos_mt

        mask = tf.one_hot(labels, depth=out_num, name='one_hot_mask')
        # mask = tf.squeeze(mask, 1)
        inv_mask = tf.subtract(1., mask, name='inverse_mask')

        s_cos_t = tf.multiply(s, cos_t, name='scalar_cos_t')

        output = tf.add(tf.multiply(s_cos_t, inv_mask),
                        tf.multiply(cos_mt_temp, mask),
                        name='arcface_loss_output')
    return output
示例#12
0
 def mask_outputs(origin_outputs):
     """mask position embedding"""
     inputs, outputs = origin_outputs
     outputs = tf.where(tf.equal(inputs, 0), inputs, outputs)
     return outputs