def load_dataset(source, output_size, chunk_size=3, autoencoder=False): config_reset() (image_path, label_path) = source[0] config.load(yaml_str= f''' io: cache: dir: {os.path.dirname(image_path)} dataset: images: type: {source[2]} directory: {os.path.dirname(image_path)} extension: {source[1]} preprocess: ~ labels: type: {source[4]} directory: {os.path.dirname(label_path)} extension: {source[3]} preprocess: ~''') if autoencoder: return imagery_dataset.AutoencoderDataset(config.dataset.images(), (chunk_size, chunk_size), tile_shape=config.io.tile_size(), stride=config.train.spec().stride) return imagery_dataset.ImageryDataset(config.dataset.images(), config.dataset.labels(), (output_size, output_size), (chunk_size, chunk_size), tile_shape=config.io.tile_size(), stride=config.train.spec().stride)
def main(options): images = config.dataset.images() if not images: print('No images specified.', file=sys.stderr) return 1 tc = config.train.spec() if options.autoencoder: ids = imagery_dataset.AutoencoderDataset( images, config.train.network.chunk_size(), tc.chunk_stride) else: labels = config.dataset.labels() if not labels: print('No labels specified.', file=sys.stderr) return 1 ids = imagery_dataset.ImageryDataset( images, labels, config.train.network.chunk_size(), config.train.network.output_size(), tc.chunk_stride) try: if options.resume is not None: model = tf.keras.models.load_model(options.resume, custom_objects=ALL_LAYERS) else: model = config_model(ids.num_bands()) model, _ = train(model, ids, tc) if options.model is not None: model.save(options.model) except KeyboardInterrupt: print() print('Training cancelled.') return 0
def autoencoder(all_sources): source = all_sources[0] config.reset() # don't load any user files (image_path, _) = source[0] config.load(yaml_str= ''' io: cache: dir: %s dataset: images: type: %s directory: %s extension: %s preprocess: enabled: false train: network: chunk_size: 3 mlflow: enabled: false''' % (os.path.dirname(image_path), source[2], os.path.dirname(image_path), source[1])) dataset = imagery_dataset.AutoencoderDataset(config.dataset.images(), config.train.network.chunk_size(), config.train.spec().chunk_stride) return dataset
def main(options): log_folder = config.dataset.log_folder() if log_folder: if not options.resume: # Start fresh and clear the read logs os.system('rm ' + log_folder + '/*') print('Dataset progress recording in: ' + log_folder) else: print('Resuming dataset progress recorded in: ' + log_folder) start_time = time.time() images = config.dataset.images() if not images: print('No images specified.', file=sys.stderr) return 1 tc = config.train.spec() if options.autoencoder: ids = imagery_dataset.AutoencoderDataset(images, config.train.network.chunk_size(), tc.chunk_stride, resume_mode=options.resume, log_folder=log_folder) else: labels = config.dataset.labels() if not labels: print('No labels specified.', file=sys.stderr) return 1 ids = imagery_dataset.ImageryDataset(images, labels, config.train.network.chunk_size(), config.train.network.output_size(), tc.chunk_stride, resume_mode=options.resume, log_folder=log_folder) try: if options.resume is not None: model = tf.keras.models.load_model(options.resume, custom_objects=ALL_LAYERS) else: model = config_model(ids.num_bands()) model, _ = train(model, ids, tc) if options.model is not None: save_model(model, options.model) except KeyboardInterrupt: print() print('Training cancelled.') stop_time = time.time() print('Elapsed time = ', stop_time-start_time) return 0
def autoencoder(all_sources): source = all_sources[0] conftest.config_reset() (image_path, _) = source[0] config.load(yaml_str=''' io: cache: dir: %s dataset: images: type: %s directory: %s extension: %s preprocess: ~''' % (os.path.dirname(image_path), source[2], os.path.dirname(image_path), source[1])) dataset = imagery_dataset.AutoencoderDataset( config.dataset.images(), (3, 3), stride=config.train.spec().stride) return dataset
def main(options): log_folder = config.train.log_folder() if log_folder: if not options.resume: # Start fresh and clear the read logs os.system('rm -f ' + log_folder + '/*') print('Dataset progress recording in: ' + log_folder) else: print('Resuming dataset progress recorded in: ' + log_folder) images = config.dataset.images() if not images: print('No images specified.', file=sys.stderr) return 1 img = images.load(0) model = config_model(img.num_bands()) if options.resume is not None: temp_model = tf.keras.models.load_model(options.resume, custom_objects=custom_objects()) else: # this one is not built with proper scope, just used to get input and output shapes temp_model = model() start_time = time.time() tile_size = config.io.tile_size() tile_overlap = None stride = config.train.spec().stride # compute input and output sizes if temp_model.input_shape[1] is None: in_shape = None out_shape = temp_model.compute_output_shape((0, tile_size[0], tile_size[1], temp_model.input_shape[3])) out_shape = out_shape[1:3] tile_overlap = (tile_size[0] - out_shape[0], tile_size[1] - out_shape[1]) else: in_shape = temp_model.input_shape[1:3] out_shape = temp_model.output_shape[1:3] if options.autoencoder: ids = imagery_dataset.AutoencoderDataset(images, in_shape, tile_shape=tile_size, tile_overlap=tile_overlap, stride=stride) else: labels = config.dataset.labels() if not labels: print('No labels specified.', file=sys.stderr) return 1 ids = imagery_dataset.ImageryDataset(images, labels, out_shape, in_shape, tile_shape=tile_size, tile_overlap=tile_overlap, stride=stride) if log_folder is not None: ids.set_resume_mode(options.resume, log_folder) assert temp_model.input_shape[1] == temp_model.input_shape[2], 'Must have square chunks in model.' assert temp_model.input_shape[3] == ids.num_bands(), 'Model takes wrong number of bands.' tf.keras.backend.clear_session() try: model, _ = train(model, ids, config.train.spec(), options.resume) if options.model is not None: save_model(model, options.model) except KeyboardInterrupt: print('Training cancelled.') stop_time = time.time() print('Elapsed time = ', stop_time-start_time) return 0
def main(options): images = config.dataset.images() if not images: print('No images specified.', file=sys.stderr) return 1 img = images.load(0) model = config_model(img.num_bands()) temp_model = model() tile_size = config.io.tile_size() tile_overlap = None stride = config.train.spec().stride # compute input and output sizes if temp_model.input_shape[1] is None: in_shape = None out_shape = temp_model.compute_output_shape((0, tile_size[0], tile_size[1], temp_model.input_shape[3])) out_shape = out_shape[1:3] tile_overlap = (tile_size[0] - out_shape[0], tile_size[1] - out_shape[1]) else: in_shape = temp_model.input_shape[1:3] out_shape = temp_model.output_shape[1:3] if options.autoencoder: ids = imagery_dataset.AutoencoderDataset(images, in_shape, tile_shape=tile_size, tile_overlap=tile_overlap, stride=stride) else: labels = config.dataset.labels() if not labels: print('No labels specified.', file=sys.stderr) return 1 ids = imagery_dataset.ImageryDataset(images, labels, out_shape, in_shape, tile_shape=tile_size, tile_overlap=tile_overlap, stride=stride) assert temp_model.input_shape[1] == temp_model.input_shape[2], 'Must have square chunks in model.' assert temp_model.input_shape[3] == ids.num_bands(), 'Model takes wrong number of bands.' tf.keras.backend.clear_session() #colormap = np.zeros(dtype=np.uint8, shape=(len(config.dataset.classes), 3)) #for c in config.dataset.classes: # print(len(config.dataset.classes), c.value) # colormap[c.value][0] = (c.color >> 32) & 0xFF # colormap[c.value][1] = (c.color >> 16) & 0xFF # colormap[c.value][2] = c.color & 0xFF images = [] labels = [] PLOT_AT_ONCE=7 for result in ids.dataset(config.dataset.classes.weights(), config_augmentation()): image = result[0].numpy() label = result[1].numpy() pw = (image.shape[0] - label.shape[0]) // 2 ph = (image.shape[1] - label.shape[1]) // 2 label = np.pad(label, ((pw, pw), (ph, ph), (0, 0))) images.append(image) labels.append(label) if len(images) == PLOT_AT_ONCE: plot_images(images, labels) images = [] labels = [] return 0
def main(options): if mixed_policy_device_compatible( ) and not config.train.disable_mixed_precision(): mixed_precision.set_global_policy('mixed_float16') print( 'Tensorflow Mixed Precision is enabled. This improves training performance on compatible GPUs. ' 'However certain precautions should be taken and several additional changes can be made to improve ' 'performance further. Details: https://www.tensorflow.org/guide/mixed_precision#summary' ) images = config.dataset.images() if not images: print('No images specified.', file=sys.stderr) return 1 img = images.load(0) model = config_model(img.num_bands()) if options.resume is not None and not options.resume.endswith('.h5'): temp_model = load_model(options.resume) else: # this one is not built with proper scope, just used to get input and output shapes temp_model = model() start_time = time.time() tile_size = config.io.tile_size() tile_overlap = None stride = config.train.spec().stride # compute input and output sizes if temp_model.input_shape[1] is None: in_shape = None out_shape = temp_model.compute_output_shape( (0, tile_size[0], tile_size[1], temp_model.input_shape[3])) out_shape = out_shape[1:3] tile_overlap = (tile_size[0] - out_shape[0], tile_size[1] - out_shape[1]) else: in_shape = temp_model.input_shape[1:3] out_shape = temp_model.output_shape[1:3] if options.autoencoder: ids = imagery_dataset.AutoencoderDataset( images, in_shape, tile_shape=tile_size, tile_overlap=tile_overlap, stride=stride, max_rand_offset=config.train.spec().max_tile_offset) else: labels = config.dataset.labels() if not labels: print('No labels specified.', file=sys.stderr) return 1 ids = imagery_dataset.ImageryDataset( images, labels, out_shape, in_shape, tile_shape=tile_size, tile_overlap=tile_overlap, stride=stride, max_rand_offset=config.train.spec().max_tile_offset) assert temp_model.input_shape[1] == temp_model.input_shape[ 2], 'Must have square chunks in model.' assert temp_model.input_shape[3] == ids.num_bands( ), 'Model takes wrong number of bands.' tf.keras.backend.clear_session() # Try to have the internal model format we use match the output model format internal_model_extension = '.savedmodel' if options.model and ('.h5' in options.model): internal_model_extension = '.h5' try: model, _ = train(model, ids, config.train.spec(), options.resume, internal_model_extension) if options.model is not None: save_model(model, options.model) except KeyboardInterrupt: print('Training cancelled.') stop_time = time.time() print('Elapsed time = ', stop_time - start_time) return 0