示例#1
0
def main():
    parser = argparse.ArgumentParser(description="MaskRCNN Demo")
    parser.add_argument(
        "--image_dir",
        default="",
        type=str,
        help="path to images directory",
    )
    parser.add_argument(
        "--config-file",
        default="../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--confidence-threshold",
        type=float,
        default=0.7,
        help="Minimum score for the prediction to be shown",
    )
    parser.add_argument(
        "--min-image-size",
        type=int,
        default=224,
        help="Smallest size of the image to feed to the model. "
        "Model was trained with 800, which gives best results",
    )
    parser.add_argument(
        "--show-mask-heatmaps",
        dest="show_mask_heatmaps",
        help="Show a heatmap probability for the top masks-per-dim masks",
        action="store_true",
    )
    parser.add_argument(
        "--masks-per-dim",
        type=int,
        default=2,
        help="Number of heatmaps per dimension to show",
    )
    parser.add_argument(
        "opts",
        help="Modify model config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    # load config from file and command-line arguments
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    # prepare object that handles inference plus adds predictions on top of image
    coco_demo = COCODemo(
        cfg,
        confidence_threshold=args.confidence_threshold,
        show_mask_heatmaps=args.show_mask_heatmaps,
        masks_per_dim=args.masks_per_dim,
        min_image_size=args.min_image_size,
    )

    filenames = os.listdir(args.image_dir)
    for filename in filenames:
        img = cv2.imread(os.path.join(args.image_dir, filename))
        if img is None:
            continue

        visualize, prediction, tracking = coco_demo.run_on_opencv_image(img)
        coco_demo.saveResults(filename, visualize, prediction, tracking)
def main():
    parser = argparse.ArgumentParser(
        description="Multi Object Tracking Video Demo")
    parser.add_argument(
        "--video-file",
        metavar="FILE",
        help="path to video file",
    )
    parser.add_argument(
        "--config-file",
        default="../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--confidence-threshold",
        type=float,
        default=0.7,
        help="Minimum score for the prediction to be shown",
    )
    parser.add_argument(
        "--min-image-size",
        type=int,
        default=224,
        help="Smallest size of the image to feed to the model. "
        "Model was trained with 800, which gives best results",
    )
    parser.add_argument(
        "--show-mask-heatmaps",
        dest="show_mask_heatmaps",
        help="Show a heatmap probability for the top masks-per-dim masks",
        action="store_true",
    )
    parser.add_argument(
        "--masks-per-dim",
        type=int,
        default=2,
        help="Number of heatmaps per dimension to show",
    )
    parser.add_argument(
        "opts",
        help="Modify model config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    # load config from file and command-line arguments
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    # prepare object that handles inference plus adds predictions on top of image
    coco_demo = COCODemo(
        cfg,
        confidence_threshold=args.confidence_threshold,
        show_mask_heatmaps=args.show_mask_heatmaps,
        masks_per_dim=args.masks_per_dim,
        min_image_size=args.min_image_size,
    )

    cam = cv2.VideoCapture(args.video_file)

    if cam.isOpened():
        # get vcap property
        width = cam.get(cv2.CAP_PROP_FRAME_WIDTH)  # float
        height = cam.get(cv2.CAP_PROP_FRAME_HEIGHT)  # float
        fps = cam.get(cv2.CAP_PROP_FPS)
        num_frame = cam.get(cv2.CAP_PROP_FRAME_COUNT)
        print("VIDEO INFO:")
        print("Width %f, Height %f, FPS %f, Frame_number %f\n" %
              (width, height, fps, num_frame))

    current_frame = 0
    success = True

    while success:
        success, img = cam.read()
        if success:
            start_time = time.time()
            visualize, prediction, tracking = coco_demo.run_on_opencv_image(
                img, current_frame)
            print("%d / %d, processing time: %.2fs" %
                  (current_frame, num_frame, time.time() - start_time))

            coco_demo.saveResults(
                str(current_frame).zfill(6), visualize, prediction, tracking)
            current_frame += 1