示例#1
0
def process_image(filename):
    print 'Process image: ', filename
    #image = PIL.Image.open(filename)
    if not os.path.isfile(filename):
        print 'Image file %s not exist' % filename
        return

    image = D.cv2.imread(filename)
    #data.set_data(image)
    show_img = image[:, :, (2, 1, 0)]
    ax.cla()
    ax.imshow(show_img, aspect='equal')

    print 'Start detection'
    timer = D.Timer()
    timer.tic()
    scores, boxes = D.im_detect(net, image)
    timer.toc()
    print('Detection took {:.3f}s for '
          '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    print 'Plot result.'
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(D.CLASSES[1:]):
        cls_ind += 1  # because we skipped background
        cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack(
            (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32)
        keep = D.nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        plot_rect(image, cls, dets, thresh=CONF_THRESH)

    fig.canvas.draw()
示例#2
0
def faster_rcnn_detect(ax, image):
    if not net:
        init_caffe() # Caffe needs to be started in this thread, otherwise GIL will make it very slow

    r,g,b,a = cv2.split(image)
    bgr_img = cv2.merge([b,g,r])
    timer = D.Timer()
    timer.tic()
    scores, boxes = D.im_detect(net, bgr_img)
    timer.toc()
    print ('Detection took {:.3f}s for '
    '{:d} object proposals').format(timer.total_time, boxes.shape[0])
    plot_image(ax, image, boxes, scores)

    return image
示例#3
0
def faster_rcnn_detect(ax, image):
    if not net:
        init_caffe(
        )  # Caffe needs to be started in this thread, otherwise GIL will make it very slow

    r, g, b, a = cv2.split(image)
    bgr_img = cv2.merge([b, g, r])
    timer = D.Timer()
    timer.tic()
    scores, boxes = D.im_detect(net, bgr_img)
    timer.toc()
    print(('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0]))
    plot_image(ax, image, boxes, scores)

    return image
示例#4
0
def init_caffe(): # TODO: parse args into here
    global net
    prototxt = os.path.join(D.cfg.MODELS_DIR, D.NETS['vgg16'][0],
    'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(D.cfg.DATA_DIR, 'faster_rcnn_models'
    , D.NETS['vgg16'][1])
    gpu_id = 0
    D.caffe.set_mode_gpu()
    D.caffe.set_device(gpu_id)
    D.cfg.GPU_ID = gpu_id
    D.cfg.TEST.HAS_RPN = True
    net = D.caffe.Net(prototxt, caffemodel, D.caffe.TEST)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype = np.uint8)
    for _ in xrange(2):
        _, _ = D.im_detect(net, im)
示例#5
0
def init_caffe():  # TODO: parse args into here
    global net
    prototxt = os.path.join(D.cfg.MODELS_DIR, D.NETS['vgg16'][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(D.cfg.DATA_DIR, 'faster_rcnn_models',
                              D.NETS['vgg16'][1])
    gpu_id = 0
    D.caffe.set_mode_gpu()
    D.caffe.set_device(gpu_id)
    D.cfg.GPU_ID = gpu_id
    D.cfg.TEST.HAS_RPN = True
    net = D.caffe.Net(prototxt, caffemodel, D.caffe.TEST)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for _ in range(2):
        _, _ = D.im_detect(net, im)
示例#6
0
def process_image(filename):
    if not net:
        init_caffe(
        )  # Caffe needs to be started in this thread, otherwise GIL will make it very slow

    print 'Process image: %s' % filename

    if not os.path.isfile(filename):
        print 'Image file %s not exist' % filename
        return

    image = D.cv2.imread(filename)
    timer = D.Timer()
    timer.tic()
    scores, boxes = D.im_detect(net, image)
    timer.toc()
    print('Detection took {:.3f}s for '
          '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    show_img = image[:, :, (2, 1, 0)]  # Reorder to RGB
    plot_image(show_img, boxes, scores)