示例#1
0
    def test_create_neural_network_object_with_dimensions_param(self):

        test_dimensions = (2, 10, 13, 15)

        neural_network = dendrites.NeuralNetwork(dimensions=test_dimensions)

        self.assertEqual(test_dimensions, neural_network.dimensions)
示例#2
0
    def setUp(self):
        self.test_inputs = [1, 0, 1]
        self.test_outputs = [1, 0]

        self.neural_network = dendrites.NeuralNetwork(dimensions=(3, 4, 2))
        self.neural_network.add(input=self.test_inputs,
                                output=self.test_outputs)
        self.neural_network.train()
示例#3
0
    def test_create_neural_network_object_with_inputs_outputs_params(self):

        test_inputs = 10
        test_outputs = 10

        neural_network = dendrites.NeuralNetwork(inputs=test_inputs,
                                                 outputs=test_outputs)

        self.assertEqual(test_inputs, neural_network.dimensions[0])
        self.assertEqual(test_outputs, neural_network.dimensions[-1])
示例#4
0
import dendrites
import logging

# Create the logger
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

# Create the neural network with 2 layers, input and output layer.
# The Input layer has 2 inputs, and the output layer has 3 outputs.
MyNeuralNet = dendrites.NeuralNetwork(dimensions=(2, 3))

# Add a supervised dataset -- tell the network how to behave
MyNeuralNet.add(input=[0, 1], output=[0, 1, 0])

# Train the network
MyNeuralNet.train()

# Run the network on the dataset we provided earlier, and see the results.
logger.info(MyNeuralNet.run(input=[0, 1]))

# Save the MyNeuralNet in a net.dat file, so we can use it later (without Training it again)
MyNeuralNet.save(location="net.dat")

# Delete MyNeuralNet from memory
del (MyNeuralNet)

# Now lets load the network from the net.dat file we created earlier.
MyLoadedNeuralNet = dendrites.NeuralNetwork()
MyLoadedNeuralNet.load(location="net.dat")

# Lets run the network one more time on the dataset we provided earlier,
示例#5
0
    def test_create_neural_network_object(self):

        neural_network = dendrites.NeuralNetwork()

        self.assertIsNotNone(neural_network)
示例#6
0
 def setUp(self):
     self.neural_network = dendrites.NeuralNetwork(dimensions=(3, 4, 2))
     self.neural_network.add(input=[1, 1, 1], output=[1, 1])
示例#7
0
 def setUp(self):
     self.neural_network = dendrites.NeuralNetwork(dimensions=(3, 4, 2))