示例#1
0
def resource_branching(neuron_params):
    ds.reset_kernel()
    np.random.seed(kernel['seeds'])
    ds.set_kernel_status(kernel, simulation_id="van_pelt_branching")
    neuron_params['growth_cone_model'] = 'run_tumble_critical'
    neuron_params['res_branching_threshold'] = np.inf

    neuron_params["position"] = np.random.uniform(-500, 500, (num_neurons, 2))
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=neuron_params,
                            num_neurites=1,
                            position=[])

    step(10, 1, False, False)
    neuron_params['res_branching_threshold'] = b_th
    ds.set_object_properties(gid,
                             params=neuron_params,
                             axon_params=neuron_params)
    step(5000, 1, False, False)
    # neuron_params['use_lateral_branching'] = True
    ds.SaveSwc(swc_resolution=5)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)
    return swc_file
示例#2
0
def test_network(plot=False):
    '''
    Bigger network
    '''
    ds.reset_kernel()
    ds.set_kernel_status({
        "resolution": 10. * minute,
        "num_local_threads": 6,
    })

    initial_state = np.random.get_state()

    num_neurons = 100
    positions = np.random.uniform(-200, 200, (num_neurons, 2)) * um
    params = {
        "position": positions,
        "growth_cone_model": "run-and-tumble",
    }

    neurons = ds.create_neurons(num_neurons, params, num_neurites=3)

    ds.simulate(0.45 * day)

    net = ds.morphology.generate_network(method="spines",
                                         max_spine_length=4. * um)

    if plot:
        ds.plot.plot_neurons(neurons, show_neuron_id=True)

    assert net.node_nb() == num_neurons, \
        "Incorrect node number in the network; failed with state " + \
        str(initial_state)
示例#3
0
def test_models():
    '''
    Simulate one neurons with each defaults model
    '''
    models      = ds.get_models()
    observables = ds.get_default_properties('neuron', 'observables', settables_only=False)

    for m in models:
        print(m)
        ds.reset_kernel()
        kernel = {"environment_required": False}

        params = {
            "growth_cone_model": m,
            "position" : [0.,0.]*um
        }

        ds.set_kernel_status(kernel)

        gids = ds.create_neurons(n=1, num_neurites=3, params=params)

        rec = [ds.create_recorders(gids, obs, levels="neuron") for obs in observables]

        ds.simulate(10*hour)

        for r in rec:
            ds.get_recording(r)
示例#4
0
def run_dense(kernel, neuron_params, ID, plot):
    """
    """
    resolution = 1.
    np.random.seed(kernel['seeds'])
    kernel["resolution"] = resolution
    kernel["angles_in_radians"] = True
    ds.set_kernel_status(kernel, simulation_id=ID)
    neuron_params['growth_cone_model'] = gc_model

    neuron_params["position"] = np.random.uniform(-1000, 1000,
                                                  (num_neurons, 2))
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=axon_params,
                            dendrites_params=dendrite_params,
                            num_neurites=6,
                            position=[])

    # ds.set_object_properties(gid, params=neuron_params,
    # axon_params=neuron_params)
    step(3. / resolution, 1, False, plot)
    step(300. / resolution, 1, False, plot)

    neuron_params['use_van_pelt'] = True
    dendrite_params['use_van_pelt'] = True
    axon_params['use_flpl_branching'] = False
    axon_params['flpl_branching_rate'] = 0.001
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(6000. / resolution, 1, False, plot)
    axon_migated = {
        'use_van_pelt': True,
        # "flpl_branching_rate" : 0.004,
        "res_retraction_threshold": 0.4,
        "res_elongation_threshold": 0.15,
        "res_elongation_factor": 0.6,
        # 'use_van_pelt' : True,
        "res_neurite_generated": 4500.,
        "res_neurite_delivery_tau": 50.,
        "res_correlation": 0.15,
        "res_variance": 0.02,
        "res_use_ratio": 0.3,
    }
    axon_params.update(axon_migated)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(3000. / resolution, 1, False, plot)
    ds.SaveSwc(swc_resolution=25)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#5
0
def run_dense(neuron_params):
    """
    """
    resolution = 1.
    # np.random.seed(kernel['seeds'])
    np.random.seed(13)

    kernel["resolution"] = resolution * minute

    # kernel["angles_in_radians"] = False
    ds.set_kernel_status(kernel, simulation_id="van_pelt_branching")
    neuron_params['growth_cone_model'] = gc_model

    neuron_params["position"] = np.random.uniform(-2500, 2500,
                                                  (num_neurons, 2)) * um
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            num_neurites=3,
                            position=[])

    step(6000. / resolution * hour, 1, False, True)
    ds.SaveSwc(swc_resolution=5)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#6
0
def run_axon_only(B, E, S, T, seed):
    neuron_params = {
        "position": np.random.uniform(-1000, 1000, (1, 2)) * um,
        "retraction_probability": 1.,
        "somatropic_factor": 0.02,
        "self_avoidance_factor": 1.,
        "growth_cone_model": "self-referential-forces",
        "filopodia_finger_length": 20. * um
    }
    ds.reset_kernel()
    axon_params = {
        "use_van_pelt": True,
        "B": B,
        "E": E,
        "S": S,
        "T": T * minute,
        "gc_split_angle_mean": 35. * deg,
    }
    kernel = {
        "resolution": 30. * minute,
        "seeds": [seed],
        "environment_required": False,
        "num_local_threads": 1,
    }
    ds.set_kernel_status(kernel)
    neurite_params = {"axon": axon_params}
    n = ds.create_neurons(n=1,
                          params=neuron_params,
                          neurite_params=neurite_params,
                          num_neurites=1)
    ds.simulate(21 * day)
    return n
示例#7
0
def test_functions():
    '''
    Run each of the main functions.
    '''
    ds.reset_kernel()
    ds.set_kernel_status('environment_required', False)

    m = ds.generate_model('constant', 'memory-based', 'run-and-tumble')
    dp = ds.get_default_properties(m)
    e = ds.get_environment()
    ks = ds.get_kernel_status()
    ms = ds.get_models()

    pp = {"growth_cone_model": m, "position": (0., 0.) * um}
    gn = ds.create_neurons(params=pp, num_neurites=2)

    n = ds.get_neurons()
    ns = ds.get_object_properties(n)
    ns = ds.get_object_properties(n, level="neurite")
    ns = ds.get_object_properties(n, level="growth_cone")
    ns = ds.get_object_state(n)
    assert ds.get_object_state(n, "num_growth_cones") == 2
    ns = ds.get_object_state(n, level="dendrite_1")
    si = ds.get_simulation_id()

    ds.simulate(20 * hour)

    ni = ds.get_neurons()
示例#8
0
def lateral_branching(neuron_params):
    ds.reset_kernel()
    np.random.seed(kernel['seeds'])
    ds.set_kernel_status(kernel, simulation_id="uniform_branching")
    neuron_params['growth_cone_model'] = 'run_tumble'
    neuron_params[use_type] = False

    neuron_params["position"] = np.random.uniform(-500, 500,
                                                  (num_neurons, 2)) * um
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            num_neurites=2)

    step(1 * hour, 1, False, False)
    neuron_params[use_type] = True
    ds.set_object_properties(gid, params=neuron_params)
    # ~ axon_params=neuron_params)
    step(2 * day, 1, False, False)
    # neuron_params['use_lateral_branching'] = True
    ds.SaveSwc(swc_resolution=5)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)
    return swc_file
示例#9
0
def test_2neuron_network(plot=True):
    '''
    Most simple network of 2 neurons
    '''
    ds.reset_kernel()
    ds.set_kernel_status("resolution", 10. * minute)

    num_neurons = 2
    positions = [(0, 0), (20, -20)] * um
    params = {
        "position":
        positions,
        "growth_cone_model":
        "run-and-tumble",
        "neurite_angles": [
            {
                "axon": 90. * deg,
                "dendrite_1": 270. * deg
            },
            {
                "axon": 180. * deg,
                "dendrite_1": 60. * deg
            },
        ],
    }

    neurons = ds.create_neurons(num_neurons, params, num_neurites=2)

    ds.simulate(0.45 * day)

    net = ds.morphology.generate_network(method="spines",
                                         spine_density=1. / um**2,
                                         max_spine_length=4. * um)

    if plot:
        ds.plot.plot_neurons(neurons, show_neuron_id=True)

    assert net.node_nb() == num_neurons, \
        "Incorrect node number in the network"

    assert net.edge_nb() == 1, \
        "Incorrect number of edges in the network"

    assert net.get_edge_attributes(name="weight")[0] > 1, \
        "Incorrect weight"

    net = ds.morphology.generate_network(method="intersections",
                                         connection_probability=1.,
                                         default_synaptic_strength=2.)

    assert net.node_nb() == num_neurons, \
        "Incorrect node number in the network"

    assert net.edge_nb() == 1, \
        "Incorrect number of edges in the network"

    assert net.get_edge_attributes(name="weight")[0] == 2, \
        "Incorrect weight"
示例#10
0
def test_delete_neurites():
    '''
    Neurons deletion
    '''
    ds.reset_kernel()

    initial_state = np.random.get_state()

    num_neurons = 50
    simtime = 2. * minute

    ds.set_kernel_status("environment_required", False)

    # create and delete
    pos = np.random.uniform(-1000, 1000, (num_neurons, 2)) * um
    neurons = ds.create_neurons(num_neurons,
                                params={"position": pos},
                                num_neurites=2)

    ds.delete_neurites("axon")

    for n in neurons:
        assert not n.has_axon, \
            "Failed with state " + str(initial_state)
        assert "axon" not in n.neurites, \
            "Failed with state " + str(initial_state)
        assert len(n.neurites) == 1, \
            "Failed with state " + str(initial_state)

    ds.create_neurites(neurons[0], neurite_types="axon")

    assert neurons[0].has_axon, \
        "Failed with state " + str(initial_state)
    assert len(neurons[0].neurites) == 2, \
        "Failed with state " + str(initial_state)

    ds.delete_neurites("dendrite_1", neurons[1])

    for n in neurons:
        if n == neurons[1]:
            assert "dendrite_1" not in n.neurites, \
                "Failed with state " + str(initial_state)
            assert not n.neurites, \
                "Failed with state " + str(initial_state)
        elif n == neurons[0]:
            assert len(n.neurites) == 2, \
                "Failed with state " + str(initial_state)
        else:
            assert len(n.neurites) == 1, \
                "Failed with state " + str(initial_state)

    ds.delete_neurites()

    for n in neurons:
        assert not n.neurites, \
            "Failed with state " + str(initial_state)
示例#11
0
def run_dense(neuron_params):
    """
    """
    resolution = 1.
    np.random.seed(kernel['seeds'])
    kernel["resolution"] = resolution * minute
    ds.set_kernel_status(kernel, simulation_id="van_pelt_branching")
    neuron_params['growth_cone_model'] = gc_model

    neuron_params["position"] = np.random.uniform(
        -500, 500, (num_neurons, 2)) * um
    gid = ds.create_neurons(n=num_neurons,
                                  params=neuron_params,
                                  axon_params=axon_params,
                                  num_neurites=3,
                                  position=[]
                                  )

    neuron_params['use_van_pelt'] = False
    neuron_params['use_flpl_branching'] = False

    ds.set_object_properties(gid, params=neuron_params,
                             axon_params=axon_params)
    step(200./resolution * minute, 1, False, True)
    neuron_params['use_van_pelt'] = True
    # neuron_params['use_flpl_branching'] = True
    # neuron_params["flpl_branching_rate"] = 0.001
    ds.set_object_properties(gid, params=neuron_params,
                             axon_params=neuron_params)
    step(1000./resolution * minute, 1, False, True)
    step(1000./resolution * minute, 1, False, True)
    step(1000./resolution * minute, 1, False, True)
    step(1000./resolution * minute, 1, False, True)
    # step(180, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(4080, 1, False, True)
    # neuron_params['use_van_pelt'] = True
    # ds.set_object_properties(gid,params = neuron_params,
    # axon_params=neuron_params)
    # step(10, 1, False, True)
    # step(10, 1, False, False)
    # neuron_params['use_lateral_branching'] = True
    ds.SaveSwc(swc_resolution=5)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#12
0
def random_walk_axon(neuron_params):
    np.random.seed(kernel['seeds'])
    ds.set_kernel_status(kernel, simulation_id="random_walk_axons")
    neuron_params['growth_cone_model'] = 'random_walk'

    neuron_params["position"] = np.random.uniform(-500, 500, (num_neurons, 2))
    ds.create_neurons(n=num_neurons,
                      params=neuron_params,
                      num_neurites=1,
                      position=[])
    name = str(neuron_params["persistence_length"])
    step(1000, 1, os.path.join(os.getcwd(), "random_walk_axon_" + name))

    ds.reset_kernel()
def run_dense(neuron_params, axes, letter, single=False):

    # neuron_params["rw_memory_tau"]: 4.,
    # neuron_params["rw_delta_corr"]: 1.8,
    ds.set_kernel_status(kernel, simulation_id="random_walk_axons")
    neuron_params["position"] = np.zeros((num_neurons, 2)) * um
    simulated_neurons = num_neurons
    if single:
        simulated_neurons = 1.
        neuron_params["position"] = np.array([0, 0]) * um
    gids = ds.create_neurons(n=simulated_neurons,
                             params=neuron_params,
                             num_neurites=1,
                             position=[])

    step(1000 * second, 1, os.path.join(os.getcwd(), "primo"), plot=False)
    neurons = ds.get_neurons()
    structure = ds.morphology.NeuronStructure(neurons)
    population = ds.Population.from_structure(structure)
    axons = population.axon_all_points()
    from matplotlib.colors import LogNorm
    import matplotlib
    import copy
    axes.text(0.03,
              1.2,
              letter,
              horizontalalignment='center',
              verticalalignment='center',
              weight='bold',
              fontsize=12,
              transform=axes.transAxes)
    if not single:
        my_cmap = copy.copy(
            matplotlib.cm.get_cmap('viridis'))  # copy the default cmap
        my_cmap.set_bad((0, 0, 0))
        axes.hist2d(axons[:, 0],
                    axons[:, 1],
                    bins=100,
                    range=[[0, 400], [-200, 200]],
                    norm=LogNorm(),
                    cmap=my_cmap)
        axes.set_xlabel("X")
        axes.set_ylabel("Y")
        axes.set_title("path density for\n {}".format(
            neuron_params["growth_cone_model"]))
    else:
        axes.plot(axons[:, 0], axons[:, 1], c='r')
    ds.reset_kernel()
示例#14
0
def test_dendrogram():
    '''
    Run each of the main functions.
    '''
    ds.reset_kernel()
    ds.set_kernel_status('environment_required', False)

    m = ds.generate_model('constant', 'pull-only', 'noisy-weighted-average')

    pp = {"growth_cone_model": m, "position": (0., 0.) * um}
    np = {"use_uniform_branching": True, "uniform_branching_rate": 3. * cpd}
    gn = ds.create_neurons(params=pp, neurite_params=np, num_neurites=2)

    ds.simulate(2 * day)

    ds.plot.plot_dendrogram(gn.axon, show=False)
    gn.dendrites["dendrite_1"].plot_dendrogram(show=False)
def run_dense(neuron_params,letter,length_simulation,single=False):

    # neuron_params["rw_memory_tau"]: 4.,
    # neuron_params["rw_delta_corr"]: 1.8,
    ds.set_kernel_status(kernel, simulation_id="random_walk_axons")
    neuron_params["position"]=np.zeros((num_neurons,2))
    simulated_neurons = num_neurons
    gids = ds.create_neurons(n=simulated_neurons,
                                   params=neuron_params,
                                   num_neurites=1,
                                   position=[]
                                   )

    step(length_simulation, 1, False ,plot=False)
    neurons    = ds.get_neurons()
    structure  = ds.morphology.NeuronStructure(neurons)
    population = ds.Population.from_structure(structure)
    ens =  ds.EnsembleRW(population)
    ens.characterizeRW("axon")
    ens.name = neuron_params["growth_cone_model"]
    fits = ens.fit()
    # import pdb; pdb.set_trace()  # XXX BREAKPOINT
    ds.reset_kernel()
    return ens
示例#16
0
    "E": 0.6,
    "S": 1.,
    "T": 10000. * minute,
}

if __name__ == '__main__':
    kernel = {
        #~ "seeds": [33, 345, 17, 193, 177],
        #~ "num_local_threads": 5,
        "seeds": [0],
        "num_local_threads": 1,
        "environment_required": False,
        "resolution": resolution * minute,
    }

    ds.set_kernel_status(kernel, simulation_id="case_neuron")
    neuron_params['growth_cone_model'] = gc_model

    neuron_params["position"] = np.random.uniform(-1000, 1000,
                                                  (num_neurons, 2)) * um
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=axon_params,
                            num_neurites=1)

    rec = ds.create_recorders(gid, ["length", "resource"],
                              levels="growth_cone")

    ds.simulate(3 * day)
    '''
    Get recording
示例#17
0
    "use_uniform_branching": True,
    "uniform_branching_rate": 0.009 * cph,
}

neurite_params = {
    "axon": {
        "initial_diameter": 4. * um
    },
    "dendrites": {
        "taper_rate": 1. / 200.,
        "initial_diameter": 3. * um
    }
}

# configure DeNSE
ds.set_kernel_status(simu_params)

# create neurons
n = ds.create_neurons(n=num_neurons,
                      params=neuron_params,
                      neurite_params=neurite_params,
                      num_neurites=2)
''' Plot the initial state '''

ds.plot.plot_neurons()
''' Simulate a few days then plot the result '''

ds.simulate(7 * day)
ds.plot.plot_neurons()
''' Change parameters and simulate again '''
示例#18
0
def test_branching():
    do_plot = int(os.environ.get("DO_PLOT", True))
    num_omp = 4
    res = 10.

    # seed
    initial_state = np.random.get_state()
    seeds = np.random.choice(np.arange(0, 1000), size=num_omp,
                             replace=False)
    num_neurons = 10

    gc_model = 'gf_po_nm'
    btype = 'flpl'
    branching_rate = btype + '_branching_rate'
    branching_type = 'use_' + btype + '_branching'

    neuron_params = {
        "position" : np.random.uniform(
            -1000, 1000, (num_neurons, 2)) * um,

        "growth_cone_model": gc_model,
        "sensing_angle": 45.*deg,
        "speed_growth_cone": .1 * um / minute,
        "persistence_length": 100. * um,

        "filopodia_finger_length": 10. * um,
        "filopodia_min_number": 30,

        "lateral_branching_angle_mean": 25.*deg,
        "lateral_branching_angle_std": 0.*deg,
        "min_branching_distance": 5.*um,
        "taper_rate": 0.,
        "diameter_fraction_lb": 1.,

        branching_type: True,
        "use_van_pelt": False,
    }

    expected_branching = 500.
    test_nb = 6

    rates = np.linspace(0.001, 0.005, test_nb)
    mean = []
    er = []
    Nb = []
    scipy_exp = []

    for rate in rates:
        ds.reset_kernel()

        kernel = {
        "resolution": res*minute,
        "seeds": seeds,
        "environment_required": False,
        "interactions": False,
        "num_local_threads": num_omp,
        }

        ds.set_kernel_status(kernel)

        sim_time = expected_branching/rate * minute
        sim_time.ito(day)
        
        neuron_params[branching_rate] = rate * cpm

        pop = ds.create_neurons(n=num_neurons, params=neuron_params,
                                num_neurites=1)
        
        rec = ds.create_recorders(pop, 'num_growth_cones',
                                  levels='neuron')

        ds.simulate(sim_time)

        branch_times = ds.get_recording(rec)['num_growth_cones']['times']
        Dt = []
        for bn in branch_times.values():
            if len(bn) > 1:
                Dt.extend(np.diff(bn))

        mean.append(np.mean(Dt))

        # 99% confidence interval for a Poisson distribution gives 2.576
        er.append(2.576/rate/np.sqrt(len(Dt)))
        Nb.append(len(Dt))

    mean_merr = np.subtract(mean, er)
    mean_perr = np.add(mean, er)
    test1 = (1/rates > mean_merr)
    test2 = (1/rates < mean_perr)

    if do_plot:
        import matplotlib.pyplot as plt
        plt.plot(rates, mean)
        plt.plot(rates, 1/rates, ls=":")
        plt.fill_between(rates, mean_merr, mean_perr, alpha=0.5)
        plt.show()
    
    assert test1.all() and test2.all(), \
        "Failed test with state " + str(initial_state)
示例#19
0
resolutions = (1., 2., 5., 10., 18., 35., 50.)[::-1]
# ~ resolutions = (10., 18., 35., 50.)[::-1]

fractions = []
lengths = []

for k, resol in enumerate(resolutions):

    print("\nSimulating with resol {}\n".format(resol))

    np.random.seed(1)
    ds.reset_kernel()

    ds.set_kernel_status({
        "resolution": resol * ms,
        "num_local_threads": num_omp,
        "seeds": [2 * i for i in range(num_omp)],
    })

    ds.set_environment(shape)

    params = {
        "sensing_angle":
        70. * deg,
        "persistence_length":
        200. * um,
        "filopodia_wall_affinity":
        2.5,
        "proba_down_move":
        0.1,
        "scale_up_move":
示例#20
0
def run_dense(neuron_params):
    """
    """
    resolution = 1.
    np.random.seed(kernel['seeds'])
    kernel["resolution"] = resolution
    kernel["angles_in_radians"] = True
    ds.set_kernel_status(kernel, simulation_id="case_neuron")
    neuron_params['growth_cone_model'] = gc_model

    neuron_params["position"] = np.random.uniform(-1000, 1000,
                                                  (num_neurons, 2))
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=axon_params,
                            dendrites_params=dendrite_params,
                            num_neurites=4,
                            position=[])
    step(100. / resolution, 1, False, True)
    arborization = {
        "use_van_pelt": True,
        "gc_split_angle_mean": 0.50,
        "B": 11.,
        "T": 200.
    }
    arborization_axon = {
        "use_van_pelt": True,
        "gc_split_angle_mean": 1.0,
        "B": 19.,
        "T": 5000.
    }

    dendrite_params.update(arborization)
    axon_params.update(arborization_axon)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(1000. / resolution, 1, False, True)
    elongation = {
        "use_van_pelt": False,
        "persistence_length": 30.,
        "res_retraction_factor": 0.01,
        "res_elongation_factor": 0.1,
        # "res_leakage": 0.05,
        "res_retraction_threshold": 0.1,
        "res_elongation_threshold": 0.2,
        "res_leakage": 30.0,
        "res_neurite_generated": 4500.,
        "res_correlation": 0.05,
        "res_variance": 0.002,
        "res_use_ratio": 0.1,
    }
    elongation_axon = {"res_elongation_factor": 0.5}

    dendrite_params.update(elongation)
    axon_params.update(elongation_axon)

    print("elongation")

    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(2002. / resolution, 1, False, True)

    # stop the dendrites
    stortignation = {
        "use_van_pelt": False,
        "persistence_length": 10.,
        "res_retraction_factor": 0.0,
        "res_elongation_factor": 0.0,
        "res_retraction_threshold": 0.000,
        "res_elongation_threshold": 10.,
    }

    stortignation_axon = {
        "use_van_pelt": False,
        "sensing_angle": 0.20,
        "persistence_length": 91.,
        "flpl_branching_rate": 0.002,
        "use_flpl_branching": True,
        "res_retraction_factor": 0.02,
        "res_elongation_factor": 0.2910,
        # "res_leakage": 0.05,
        "res_retraction_threshold": 0.0001,
        "res_elongation_threshold": 0.10,
        "res_leakage": 10.0,
        "res_neurite_generated": 45000.,
        "res_correlation": 0.05,
        "res_weight_diameter": 0.,
        "res_variance": 0.001,
        "res_use_ratio": 0.1,
    }

    print("stortignation")

    dendrite_params.update(stortignation)
    axon_params.update(stortignation_axon)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(2000. / resolution, 1, False, True)

    ds.SaveSwc(swc_resolution=5)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#21
0
def run_dense(neuron_params):
    """
    """
    resolution = 1.
    np.random.seed(kernel['seeds'])
    kernel["resolution"] = resolution
    kernel["angles_in_radians"] = True
    ds.set_kernel_status(kernel, simulation_id="case_neuron")
    neuron_params['growth_cone_model'] = gc_model

    neuron_params["position"] = np.random.uniform(-1000, 1000,
                                                  (num_neurons, 2))
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=axon_params,
                            dendrites_params=dendrite_params,
                            num_neurites=4,
                            position=[])

    step(2000. / resolution, 1, False, True)

    splitting_dendrites = {
        'use_van_pelt': True,
        "persistence_length": 60.0,
        "gc_split_angle_mean": 1.,
        'use_flpl_branching': True,
        "flpl_branching_rate": 0.0036,
        "B": 30.,
        "E": 0.9,
        "S": 1.0,
        "T": 10000.,
    }
    dendrite_params.update(splitting_dendrites)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params)
    step(2000. / resolution, 1, False, True)
    arborization = {
        'use_van_pelt': False,
        'use_flpl_branching': False,
        "persistence_length": 30.0,
        "res_weight_diameter": 0.1,
        "res_retraction_threshold": 0.01,
        "res_elongation_threshold": 0.12,
        "res_elongation_factor": 0.0612,
        "res_retraction_factor": 10.,
        # 'use_van_pelt' : True,
        "res_neurite_generated": 9500.,
        "res_neurite_delivery_tau": 50.,
        "res_correlation": 0.15,
        "res_variance": 0.02,
        "res_use_ratio": 0.3,
    }
    dendrite_params.update(arborization)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(2000. / resolution, 1, False, True)

    arborization = {
        'use_van_pelt': True,
        # 'use_flpl_branching' : True,
        "flpl_branching_rate": 0.00036,
        "persistence_length": 5.0,
        "res_retraction_threshold": 0.1,
        "res_weight_diameter": 0.001,
        "res_elongation_threshold": 0.14,
        "res_elongation_factor": 0.12,
        # 'use_van_pelt' : True,
        "res_neurite_generated": 9500.,
        "res_neurite_delivery_tau": 50.,
        "res_correlation": 0.5,
        "res_variance": 0.2,
        "res_use_ratio": 0.4,
    }
    dendrite_params.update(arborization)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(2000. / resolution, 1, False, True)
    step(2000. / resolution, 1, False, True)
    # neuron_params['use_flpl_branching'] = True
    # neuron_params["flpl_branching_rate"] = 0.001
    # ds.set_object_properties(gid,params = neuron_params,
    # axon_params= neuron_params)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(180, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(4080, 1, False, True)
    # neuron_params['use_van_pelt'] = True
    # ds.set_object_properties(gid,params = neuron_params,
    # axon_params=neuron_params)
    # step(10, 1, False, True)
    # step(10, 1, False, False)
    # neuron_params['use_lateral_branching'] = True
    ds.SaveSwc(swc_resolution=15)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#22
0
def test_persistence():
    persistences = []

    for k, resol in enumerate(resolutions):
        np.random.seed(1)
        ds.reset_kernel()
        ds.set_kernel_status({
            "resolution": resol * minute,
            "num_local_threads": num_omp,
            "seeds": [2 * i for i in range(num_omp)],
            "environment_required": False,
            "adaptive_timestep": -1.,
            "interactions": False,
        })

        params = {
            "growth_cone_model": gc_model,
            "speed_growth_cone": speed * um / minute,
            "filopodia_wall_affinity": 2.5,
            "filopodia_min_number": 100,
            "proba_down_move": 0.05,
            "scale_up_move": 5. * um,
            "persistence_length": l_p * um,
            "sensing_angle": sensing_angle,
            "position": [(0., 0.) for _ in range(num_neurons)] * um,
            "taper_rate": 0.,
        }

        gids = ds.create_neurons(n=num_neurons, num_neurites=1, params=params)

        rec = ds.create_recorders(gids, "length")

        ds.simulate(simtime * minute)
        ''' Analyze the resulting neurons '''

        population = ds.elements.Population.from_gids(gids)

        axons = [neuron.axon.xy.m.transpose() for neuron in population]

        sequence = []
        for i, points in enumerate(axons):
            sequence.append(correlation(points, distances))

        avg_corr = np.average(sequence, axis=0)
        lp, _ = curve_fit(exp_decay, distances, avg_corr, p0=l_p)

        persistences.append(lp)

        if do_plot:
            ax2.scatter(resol, lp[0])

            ax.plot(distances,
                    avg_corr,
                    color=cmap(colors[k]),
                    alpha=1,
                    label="resol: {}".format(resol))
            ax.plot(distances, exp_decay(distances, lp[0]))

            if show_neurons:
                ds.plot.plot_neurons(show=False, title=str(resol))

    if do_plot:
        ax.plot(distances, np.exp(-distances / l_p), ls="--", c="k")

        ax.legend(loc=1, fancybox=True, frameon=True)

        ax.set_ylabel("Correlation")
        ax.set_ylabel(r"Distance ($\mu$m)")

        ax2.set_ylabel(r"Persistence length ($\mu$m)")
        ax2.set_xlabel("Resolution (minutes)")

        ax2.axhline(l_p)

        fig.patch.set_alpha(0.)
        fig2.patch.set_alpha(0.)

        plt.show()

    # just check that no ridiculous number is encountered
    for lp in persistences:
        assert lp > 0. and np.abs((lp - l_p) / l_p) < 0.5
示例#23
0
def run_dense(kernel, neuron_params, ID, plot=True):
    """
    """
    np.random.seed(kernel['seeds'])
    resolution = kernel["resolution"]
    kernel["angles_in_radians"] = True
    ds.set_kernel_status(kernel, simulation_id=ID)
    neuron_params['growth_cone_model'] = gc_model

    neuron_params["position"] = np.random.uniform(-1000, 1000,
                                                  (num_neurons, 2))
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=axon_params,
                            dendrites_params=dendrite_params,
                            num_neurites=4,
                            position=[])
    step(100. / resolution, 1, False, plot)
    arborization = {
        "use_van_pelt": True,
        "gc_split_angle_mean": 0.50,
        "B": 11.,
        "T": 200.
    }
    arborization_axon = {
        "use_van_pelt": True,
        "gc_split_angle_mean": 1.0,
        "B": 19.,
        "T": 2000.
    }

    dendrite_params.update(arborization)
    axon_params.update(arborization_axon)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(1000. / resolution, 1, False, plot)
    elongation = {
        "use_van_pelt": False,
        "persistence_length": 30.,
    }
    dendrite_params.update(elongation)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(2002. / resolution, 1, False, plot)
    stortignation = {
        "use_van_pelt": False,
        "persistence_length": 10.,
    }
    stortignation_axon = {
        "use_van_pelt": False,
        # "sensing_angle": 0.20,
        "use_flpl_branching": True,
        "persistence_length": 91.,
        "flpl_branching_rate": 0.0066,
    }

    # dendrite_params.update(stortignation)
    # axon_params.update(stortignation_axon)
    # ds.set_object_properties(gid,
    # params=neuron_params,
    # dendrites_params=dendrite_params,
    # axon_params=axon_params)
    step(2000. / resolution, 1, False, plot)

    # stortignation = {"use_van_pelt": False,
    # "persistence_length":10.,
    # }

    # stortignation_axon={
    # "use_van_pelt": False,
    # "use_flpl_branching": True,
    # "flpl_branching_rate" : 0.003,
    # "sensing_angle": 0.63,
    # "persistence_length": 40.,
    # }

    # dendrite_params.update(stortignation)
    # axon_params.update(stortignation_axon)
    # ds.set_object_properties(gid,
    # params=neuron_params,
    # dendrites_params=dendrite_params,
    # axon_params=axon_params)
    # step(2000./resolution, 1, False, True)
    # step(2000./resolution, 1, False, True)
    ds.SaveSwc(swc_resolution=5)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#24
0
def run_dense(neuron_params):
    """
    """
    resolution = 30. * minute
    np.random.seed(kernel['seeds'])  #Seeds the random number generator
    kernel["resolution"] = resolution
    #    kernel["angles_in_radians"] = True
    ds.set_kernel_status(kernel, simulation_id="multipolar")

    neuron_params["position"] = np.random.uniform(-1000, 1000,
                                                  (num_neurons, 2)) * um

    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=axon_params,
                            dendrites_params=dendrite_params,
                            num_neurites=4)

    # ds.set_object_properties(gid, params=neuron_params,
    # axon_params=neuron_params)
    step(3 * day, 1, False, True)

    axon_params['use_van_pelt'] = True
    axon_params["B"] = 90. * cpm
    axon_params["E"] = 0.2
    axon_params["S"] = 1.
    axon_params["T"] = 10000. * minute

    dendrite_params['use_van_pelt'] = True
    dendrite_params["B"] = 90. * cpm
    dendrite_params["E"] = 0.2
    dendrite_params["S"] = 1.
    dendrite_params["T"] = 10000. * minute

    axon_params['use_flpl_branching'] = False
    axon_params['flpl_branching_rate'] = 0.001 * cpm

    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)

    step(6 * day, 1, False, True)

    axon_migated = {
        'use_van_pelt': True,
        # "flpl_branching_rate" : 0.004,
        "res_retraction_threshold": 0.4 * uM,
        "res_elongation_threshold": 0.15 * uM,
        "res_elongation_factor": 0.6 * um / minute,
        # 'use_van_pelt' : True,
        "res_neurite_generated": 4500. * uM,
        "res_neurite_delivery_tau": 50. * minute,
        "res_correlation": 0.15,
        "res_variance": 0.02 * uM / minute**0.5,
        "res_use_ratio": 0.3 * cpm,
    }
    axon_params.update(axon_migated)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(3 * day, 1, False, True)
    # neuron_params['use_flpl_branching'] = True
    # neuron_params["flpl_branching_rate"] = 0.001
    # ds.set_object_properties(gid,params = neuron_params,
    # axon_params= neuron_params)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(180, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(4080, 1, False, True)
    # neuron_params['use_van_pelt'] = True
    # ds.set_object_properties(gid,params = neuron_params,
    # axon_params=neuron_params)
    # step(10, 1, False, True)
    # step(10, 1, False, False)
    # neuron_params['use_lateral_branching'] = True
    ds.io.save_to_swc(resolution=25)
    ds.save_json_info()

    swc_file = ds.get_simulation_id()
    # print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#25
0
    "taper_rate": 1. / 200.,
    "use_uniform_branching": False,
    "use_van_pelt": True,
    "B": 1. * cpm,
    "T": 5000. * minute,
    "gc_split_angle_mean": 25. * deg,
}

kernel = {
    "resolution": 30. * minute,
    "seeds": [8],
    "environment_required": False,
    "num_local_threads": num_omp,
}

ds.set_kernel_status(kernel)

# create neurons

n = ds.create_neurons(n=num_neurons,
                      params=neuron_params,
                      axon_params=axon_params,
                      dendrites_params=dend_params,
                      num_neurites=2)

# first, elongation

ds.simulate(10000 * minute)
ds.plot.plot_neurons()

# then branching
示例#26
0
文件: srf.py 项目: aquaresima/DeNSE
#
# DeNSE is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with DeNSE. If not, see <http://www.gnu.org/licenses/>.

import dense as ds
from dense.units import *

# import matplotlib as mpl
# mpl.use("Qt5Agg")

ds.set_kernel_status("resolution", 10. * minute)

params = {
    # "growth_cone_model": "run-and-tumble",
    "growth_cone_model": "self-referential-forces",
    "somatropic_factor": 0.03,
    "somatropic_scale": 50. * um,
    "noise_amplitude": 1. * deg,
    "position": (0., 0.) * um,
}

neuron = ds.create_neurons(params=params, num_neurites=1)

rec = ds.create_recorders(neuron, ["length", "stepping_probability"],
                          levels="growth_cone")
示例#27
0
        "num_local_threads": 6,
        "resolution": 5. * minute,
        "interactions": True
    }
    # kernel = {"seeds":[33],
    #           "num_local_threads": 1,
    #           "resolution": 5.*minute,
    #           "interactions": True}
    # ~ kernel={
    # ~ "seeds":[23, 68],
    # ~ "num_local_threads": 2,
    # ~ "resolution": 30.*minute
    # ~ }
    kernel["environment_required"] = False

    ds.set_kernel_status(kernel, simulation_id="ID")
    gids, culture = None, None

    if kernel["environment_required"]:
        shape = ds.environment.Shape.disk(300.)
        culture = ds.set_environment(shape)
        # generate the neurons inside the left chamber
        # pos_left = culture.seed_neurons(
        # neurons=100, xmax=540, soma_radius=soma_radius)
        neuron_params['position'] = culture.seed_neurons(
            neurons=num_neurons, soma_radius=soma_radius)
    else:
        neuron_params['position'] = \
            np.random.uniform(-1000, 1000, (num_neurons, 2))*um

    print("\nCreating neurons\n")
示例#28
0
def test_delete_neurons():
    '''
    Neurons deletion
    '''
    ds.reset_kernel()

    num_neurons = 50
    simtime     = 2.*minute

    initial_state = np.random.get_state()

    ds.set_kernel_status("environment_required", False)

    # create and delete
    nparams = {
        "position": np.random.uniform(-1000, 1000, (num_neurons, 2))*um,
        "growth_cone_model": "res_po_rt"
    }
    neurons = ds.create_neurons(num_neurons, params=nparams,
                                num_neurites=2)

    ds.delete_neurons(3)
    ds.delete_neurons(neurons[8])

    # check neurons have been deleted
    neurons_got = ds.get_neurons()
    n_to_ints   = [int(n) for n in neurons_got]
    n_to_ints  += ds.get_neurons(True)

    assert len(n_to_ints) == 2*(num_neurons - 2), \
        "Failed with state " + str(initial_state)
    assert 3 not in n_to_ints, \
        "Failed with state " + str(initial_state)
    assert 8 not in n_to_ints, \
        "Failed with state " + str(initial_state)

    # simulate then delete
    ds.simulate(simtime)
    ds.delete_neurons([5, 7])
    ds.delete_neurons(neurons[40:45])

    # recreate neurons and resimulate
    nparams = {
        "position": np.random.uniform(-1000, 1000, (num_neurons, 2))*um,
        "growth_cone_model": "res_po_rt"
    }
    _ = ds.create_neurons(num_neurons, params=nparams, num_neurites=2)
    ds.simulate(simtime)

    neurons_got = ds.get_neurons()
    n_to_ints   = [int(n) for n in neurons_got]
    n_to_ints  += ds.get_neurons(True)

    assert len(n_to_ints) == 2*(2*num_neurons - 4 - len(neurons[40:45])), \
        "Failed with state " + str(initial_state)
    assert 5 not in n_to_ints, \
        "Failed with state " + str(initial_state)
    assert 7 not in n_to_ints, \
        "Failed with state " + str(initial_state)
    for n in neurons[40:45]:
        assert int(n) not in n_to_ints, \
            "Failed with state " + str(initial_state)

    # delete all neurons
    ds.delete_neurons()

    # check no neurons are left
    assert not ds.get_neurons(), \
        "Failed with state " + str(initial_state)
示例#29
0
def run_dense(neuron_params):
    """
    """
    kernel["resolution"] = resolution * minute
    ds.set_kernel_status(kernel, simulation_id="case_neuron")
    neuron_params['growth_cone_model'] = gc_model
    print(neuron_params['growth_cone_model'])

    neuron_params["position"] = np.random.uniform(-1000, 1000,
                                                  (num_neurons, 2)) * um
    print(neuron_params['growth_cone_model'])
    gid = ds.create_neurons(n=num_neurons,
                            params=neuron_params,
                            axon_params=axon_params,
                            dendrites_params=dendrite_params,
                            num_neurites=1)
    print(neuron_params['growth_cone_model'])
    # ~ rec = ds.create_recorders(gid, ["speed", "resource"], levels="growth_cone")
    rec = ds.create_recorders(gid, ["resource"], levels="growth_cone")
    print(neuron_params['growth_cone_model'])
    # ds.set_object_properties(gid, params=neuron_params,
    # axon_params=neuron_params)
    step(3. / resolution * minute, 1, False, False)
    step(500. / resolution * minute, 1, False, False)
    print(neuron_params['growth_cone_model'])
    neuron_params['use_van_pelt'] = True
    dendrite_params['use_van_pelt'] = True
    axon_params['use_flpl_branching'] = True
    axon_params['flpl_branching_rate'] = 0.001 * cpm
    neuron_params.pop('growth_cone_model')
    print(dendrite_params)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(2000. / resolution * minute, 1, False, True)
    axon_migated = {
        # 'use_flpl_branching' : True,
        # "flpl_branching_rate" : 0.004 * cpm,
        "res_retraction_threshold": 0.4 * uM,
        "res_elongation_threshold": 0.15 * uM,
        "res_elongation_factor": 0.4 * um / minute,
        # 'use_van_pelt' : True,
        "res_neurite_generated": 4500. * uM,
        "res_neurite_delivery_tau": 50. * minute,
        "res_correlation": 0.15,
        "res_variance": 0.02 * uM / minute**0.5,
        "res_use_ratio": 0.3,
    }
    axon_params.update(axon_migated)
    ds.set_object_properties(gid,
                             params=neuron_params,
                             dendrites_params=dendrite_params,
                             axon_params=axon_params)
    step(3000. / resolution * minute, 1, False, True)
    # neuron_params['use_flpl_branching'] = True
    # neuron_params["flpl_branching_rate"] = 0.001 * cpm
    # ds.set_object_properties(gid,params = neuron_params,
    # axon_params= neuron_params)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(1000./resolution, 1, False, True)
    # step(180, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(1080, 1, False, True)
    # step(4080, 1, False, True)
    # neuron_params['use_van_pelt'] = True
    # ds.set_object_properties(gid,params = neuron_params,
    # axon_params=neuron_params)
    # step(10, 1, False, True)
    # step(10, 1, False, False)
    # neuron_params['use_lateral_branching'] = True
    #~ ds.SaveSwc(swc_resolution=5)
    #~ ds.save_json_info()
    ds.plot.plot_recording(rec, show=False)

    swc_file = ds.get_simulation_id()
    # print(swc_file)

    # ds.reset_kernel()
    return swc_file
示例#30
0
for i, m in enumerate(masks):
    shape.add_area(m, height=30., name="top_{}".format(i + 1))

env.plot_shape(shape, show=True)
'''
Set the environment in DeNSE, then create the neurons
'''

num_omp = 1
resol = 2. * minute

nngt.seed(0)

ds.set_kernel_status({
    "resolution": resol,
    "num_local_threads": num_omp,
    "seeds": [2 * i + 1 for i in range(num_omp)],
    # ~ "seeds": [11, 6, 7, 9],
})

np.random.seed(1)

ds.set_environment(shape)

shape = ds.get_environment()

# ~ for a in shape.areas.values():
# ~ env.plot_shape(a, show=False)
# ~ env.plot_shape(shape, show=True)

# seed the neurons on top
top_areas = [k for k in shape.areas.keys() if k.find("default_area") != 0]