示例#1
0
import scipy.optimize as opt

file_root = 'flow_'

# Linear flow profile fit
print("[densmap] Fitting LINEAR flow profile")

FP = dm.fitting_parameters(par_file='parameters_shear.txt')
# FP = dm.fitting_parameters( par_file='parameters_viscosity.txt' )
folder_name = FP.folder_name

Lx = FP.lenght_x
Lz = FP.lenght_z

vel_x, vel_z = dm.read_velocity_file(folder_name + '/' + file_root +
                                     '00001.dat')
Nx = vel_x.shape[0]
Nz = vel_x.shape[1]
hx = Lx / Nx
hz = Lz / Nz
x = hx * np.arange(0.0, Nx, 1.0, dtype=float) + 0.5 * hx
z = hz * np.arange(0.0, Nz, 1.0, dtype=float) + 0.5 * hz
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')

profile_velocity_x = np.zeros(len(z), dtype=float)
profile_velocity_z = np.zeros(len(z), dtype=float)
profile_kinetic_energy = np.zeros(len(z), dtype=float)

spin_up_steps = 0
n_init = FP.first_stamp + spin_up_steps
n_fin = FP.last_stamp
示例#2
0
file_name = 'flow_00150.dat'
base_name = 'flow_'
# folder_name = '100nm/third_run'
# file_name = 'flow_00900.dat'
# folder_name = 'RawFlowData'
# file_name = 'flow_SOL_00100.dat'

# PARAMETERS TO TUNE
Lx = 60.00000
Lz = 35.37240
# Lx = 300.00000
# Lz = 200.44360
# Lx = 75.60000
# Lz = 28.00000

vel_x, vel_z = dm.read_velocity_file(folder_name + '/' + file_name)
rho = dm.read_density_file(folder_name + '/' + file_name, bin='y')
# p_x = np.multiply(rho, vel_x)
# p_z = np.multiply(rho, vel_z)
Nx = vel_x.shape[0]
Nz = vel_x.shape[1]
hx = Lx / Nx  # [nm]
hz = Lz / Nz  # [nm]
x = hx * np.arange(0.0, Nx, 1.0, dtype=float)
z = hz * np.arange(0.0, Nz, 1.0, dtype=float)
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')

kin_ener = 0.5 * np.multiply(
    rho,
    np.multiply(vel_x, vel_x) + np.multiply(vel_z, vel_z))
示例#3
0
import densmap as dm
import numpy as np

FP = dm.fitting_parameters(par_file='parameters_shear.txt')

folder_name = FP.folder_name
file_root = 'flow_'

Lx = FP.lenght_x
Lz = FP.lenght_z

# CREATING MESHGRID
print("Creating meshgrid")
dummy_dens = dm.read_density_file(folder_name + '/' + file_root + '00500.dat',
                                  bin='y')
dummy_vel_x, dummy_vel_z = dm.read_velocity_file(folder_name + '/' +
                                                 file_root + '00500.dat')
Nx = dummy_dens.shape[0]
Nz = dummy_dens.shape[1]
hx = Lx / Nx
hz = Lz / Nz
x = hx * np.arange(0.0, Nx, 1.0, dtype=float)
z = hz * np.arange(0.0, Nz, 1.0, dtype=float)
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')

# Manually tune, crop window [nm]
x0_crop = 87.00
x1_crop = 100.0
z0_crop = 0.000
z1_crop = 6.000
# Ny need to be strictly larger than 1
Ny = 2
示例#4
0
from matplotlib import cm

import pandas as pd


## ## ### # ## ###
# INITIALIZATION #
# #### ## # # ## #

FP = dm.fitting_parameters( par_file='parameters_shear.txt' )

folder_name = FP.folder_name
file_root = 'flow_'
Lx = FP.lenght_x
Lz = FP.lenght_z
vel_x, vel_z = dm.read_velocity_file(folder_name+'/'+file_root+'00001.dat')
Nx = vel_x.shape[0]
Nz = vel_x.shape[1]
hx = Lx/Nx
hz = Lz/Nz
x = hx*np.arange(0.0,Nx,1.0, dtype=float)+0.5*hx
z = hz*np.arange(0.0,Nz,1.0, dtype=float)+0.5*hz
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')
n_init = FP.first_stamp
n_fin = FP.last_stamp
dt = FP.time_step
delta_th = 2.0
z0 = 0.80
i0 = np.abs(z-z0).argmin()
n_transient = int(max(1, n_fin-1000))
n_dump = 10
示例#5
0
import densmap as dm

import numpy as np

import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm

folder_name = 'RawFlowData'
file_name = 'combined_00100.dat'

# PARAMETERS TO TUNE
Lx = 75.60000
Lz = 28.00000

vel_x, vel_z = dm.read_velocity_file(folder_name + '/' + file_name)
kin_ener = 0.5 * (np.multiply(vel_x, vel_x) + np.multiply(vel_z, vel_z))

Nx = vel_x.shape[0]
Nz = vel_x.shape[1]
hx = Lx / Nx  # [nm]
hz = Lz / Nz  # [nm]
x = hx * np.arange(0.0, Nx, 1.0, dtype=float)
z = hz * np.arange(0.0, Nz, 1.0, dtype=float)
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')

# Try to average with values at previous steps
n_hist = 10
n_step = 100
n_hist = min(n_hist, n_step)
w = np.exp(-np.linspace(0.0, 5.0, n_hist))
示例#6
0
import matplotlib.pyplot as plt

import scipy.optimize as opt

file_root = 'flow_'

FP = dm.fitting_parameters(par_file='parameters_test.txt')

# folder_poiseuille = FP.folder_name+'LJPoiseuille/Flow_epsilon03_f6'
# folder_couette    = FP.folder_name+'LJCouette/Flow_epsilon03'
folder_poiseuille = FP.folder_name + 'ConfinedPoiseuille_Q1_match/Flow'
folder_couette = FP.folder_name + 'ConfinedCouette_Q1/Flow'
Lx = FP.lenght_x
Lz = FP.lenght_z

vel_x, vel_z = dm.read_velocity_file(folder_poiseuille + '/' + file_root +
                                     '00001.dat')
Nx = vel_x.shape[0]
Nz = vel_x.shape[1]
hx = Lx / Nx
hz = Lz / Nz
x = hx * np.arange(0.0, Nx, 1.0, dtype=float) + 0.5 * hx
z = (hz * np.arange(0.0, Nz, 1.0, dtype=float) + 0.5 * hz)
z_s = 1.2
z_f = 1.8
n_exclude = np.argmin(np.abs(z - z_f))
n_data = len(z) - n_exclude
print("# exclude = " + str(n_exclude))
z = (hz * np.arange(0.0, Nz, 1.0, dtype=float) + 0.5 * hz) - 0.5 * Lz
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')

n_init = FP.first_stamp