示例#1
0
    def is_valid(self, state):
        if has_nonterminals(state):
            return False

        robot = build_normalized_robot(state)
        _, has_self_collision = presimulate(robot)

        return not has_self_collision
def sample_design(args, task_id, seed, env, V, eps, results_queue, time_queue,
                  done_event):
    tt0 = time.time()

    random.seed(seed)

    valid = False
    samples = []
    while not valid:
        state = make_initial_graph()
        rule_seq = []
        no_action_flag = False
        for _ in range(args.depth):
            action, step_type = select_action(env, V, state, eps)
            if action is None:
                no_action_flag = True
                break
            rule_seq.append(action)
            next_state = env.transite(state, action)
            state = next_state
            if not has_nonterminals(state):
                break

        valid = env.is_valid(state)

        if not valid:
            # update the invalid sample's count
            if no_action_flag:
                info = 'no_action'
            elif has_nonterminals(state):
                info = 'step_exceeded'
            else:
                info = 'self_collision'
            samples.append(Sample(task_id, rule_seq, -2.0, info))
        else:
            samples.append(
                Sample(task_id, rule_seq, predict(V, state), info='valid'))

    tt = time.time() - tt0
    time_queue.put(tt)

    results_queue.put(samples)

    done_event.wait()
def compute_Vhat(robot_graph, env, V):
    if has_nonterminals(robot_graph):
        available_actions = env.get_available_actions(robot_graph)
        if len(available_actions) == 0:
            return -5.0
        next_states = []
        for action in available_actions:
            next_states.append(env.transite(robot_graph, action))
        values = predict_batch(V, next_states)
        return np.max(values)
    else:
        return env.get_reward(robot_graph)[1]
示例#4
0
    def step(self, action):
        next_state = self.transite(self.state, action)
        self.rule_seq.append(action)
        if has_nonterminals(next_state):
            reward = 0.
            done = False
        else:
            input_sequence, reward = self.get_reward(next_state)
            done = True

        self.state = next_state

        return self.state, reward, done
示例#5
0
def search_algo(args):
    # iniailize random seed
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.set_num_threads(1)

    # initialize/load
    task_class = getattr(tasks, args.task)
    if args.no_noise:
        task = task_class(force_std=0.0, torque_std=0.0)
    else:
        task = task_class()
    graphs = rd.load_graphs(args.grammar_file)
    rules = [rd.create_rule_from_graph(g) for g in graphs]

    # initialize preprocessor
    # Find all possible link labels, so they can be one-hot encoded
    all_labels = set()
    for rule in rules:
        for node in rule.lhs.nodes:
            all_labels.add(node.attrs.require_label)
    all_labels = sorted(list(all_labels))

    # TODO: use 80 to fit the input of trained MPC GNN, use args.depth * 3 later for real mpc
    max_nodes = args.depth * 3

    global preprocessor
    # preprocessor = Preprocessor(max_nodes = max_nodes, all_labels = all_labels)
    preprocessor = Preprocessor(all_labels=all_labels)

    # initialize the env
    env = RobotGrammarEnv(task,
                          rules,
                          seed=args.seed,
                          mpc_num_processes=args.mpc_num_processes)

    # initialize Value function
    device = 'cpu'
    state = env.reset()
    sample_adj_matrix, sample_features, sample_masks = preprocessor.preprocess(
        state)
    num_features = sample_features.shape[1]
    V = Net(max_nodes=max_nodes, num_channels=num_features,
            num_outputs=1).to(device)

    # load pretrained V function
    if args.load_V_path is not None:
        V.load_state_dict(torch.load(args.load_V_path))
        print_info('Loaded pretrained V function from {}'.format(
            args.load_V_path))

    # initialize target V_hat look up table
    V_hat = dict()

    # load pretrained V_hat
    if args.load_Vhat_path is not None:
        V_hat_fp = open(args.load_Vhat_path, 'rb')
        V_hat = pickle.load(V_hat_fp)
        V_hat_fp.close()
        print_info('Loaded pretrained Vhat from {}'.format(
            args.load_Vhat_path))

    # initialize invalid_his
    invalid_his = dict()
    num_invalid_samples, num_valid_samples = 0, 0
    repeated_cnt = 0

    # initialize the seen states pool
    states_pool = StatesPool(capacity=args.states_pool_capacity)
    states_set = set()

    # explored designs
    designs = []
    design_rewards = []
    design_opt_seeds = []

    # record prediction error
    prediction_error_sum = 0.0

    if not args.test:
        # initialize save folders and files
        fp_log = open(os.path.join(args.save_dir, 'log.txt'), 'w')
        fp_log.close()
        fp_eval = open(os.path.join(args.save_dir, 'eval.txt'), 'w')
        fp_eval.close()
        design_csv_path = os.path.join(args.save_dir, 'designs.csv')
        fp_csv = open(design_csv_path, 'w')
        fieldnames = ['rule_seq', 'reward', 'opt_seed']
        writer = csv.DictWriter(fp_csv, fieldnames=fieldnames)
        writer.writeheader()
        fp_csv.close()

        # initialize the optimizer
        global optimizer
        optimizer = torch.optim.Adam(V.parameters(), lr=args.lr)

        # initialize best design rule sequence
        best_design, best_reward = None, -np.inf

        # reward history
        epoch_rew_his = []
        last_checkpoint = -1

        # recording time
        t_sample_sum = 0.

        # record the count for invalid samples
        no_action_samples, step_exceeded_samples, self_collision_samples = 0, 0, 0

        for epoch in range(args.num_iterations):
            t_start = time.time()

            V.eval()

            # update eps and eps_sample
            if args.eps_schedule == 'linear-decay':
                eps = args.eps_start + epoch / args.num_iterations * (
                    args.eps_end - args.eps_start)
            elif args.eps_schedule == 'exp-decay':
                eps = args.eps_end + (args.eps_start - args.eps_end) * np.exp(
                    -1.0 * epoch / args.num_iterations / args.eps_decay)

            if args.eps_sample_schedule == 'linear-decay':
                eps_sample = args.eps_sample_start + epoch / args.num_iterations * (
                    args.eps_sample_end - args.eps_sample_start)
            elif args.eps_sample_schedule == 'exp-decay':
                eps_sample = args.eps_sample_end + (
                    args.eps_sample_start - args.eps_sample_end) * np.exp(
                        -1.0 * epoch / args.num_iterations /
                        args.eps_sample_decay)

            t_sample, t_update, t_mpc, t_opt = 0, 0, 0, 0

            selected_design, selected_reward = None, -np.inf
            selected_state_seq, selected_rule_seq = None, None

            p = random.random()
            if p < eps_sample:
                num_samples = 1
            else:
                num_samples = args.num_samples

            # use e-greedy to sample a design within maximum #steps.
            for _ in range(num_samples):
                valid = False
                while not valid:
                    t0 = time.time()

                    state = env.reset()
                    rule_seq = []
                    state_seq = [state]
                    no_action_flag = False
                    for _ in range(args.depth):
                        action, step_type = select_action(env, V, state, eps)
                        if action is None:
                            no_action_flag = True
                            break
                        rule_seq.append(action)
                        next_state = env.transite(state, action)
                        state_seq.append(next_state)
                        state = next_state
                        if not has_nonterminals(state):
                            break

                    valid = env.is_valid(state)

                    t_sample += time.time() - t0

                    t0 = time.time()

                    if not valid:
                        # update the invalid sample's count
                        if no_action_flag:
                            no_action_samples += 1
                        elif has_nonterminals(state):
                            step_exceeded_samples += 1
                        else:
                            self_collision_samples += 1

                        # update the Vhat for invalid designs
                        update_Vhat(args,
                                    V_hat,
                                    state_seq,
                                    -2.0,
                                    invalid=True,
                                    invalid_cnt=invalid_his)
                        # update states pool
                        update_states_pool(states_pool, state_seq, states_set,
                                           V_hat)
                        num_invalid_samples += 1
                    else:
                        num_valid_samples += 1

                    t_update += time.time() - t0

                predicted_value = predict(V, state)
                if predicted_value > selected_reward:
                    selected_design, selected_reward = state, predicted_value
                    selected_rule_seq, selected_state_seq = rule_seq, state_seq

            t0 = time.time()

            repeated = False
            if (hash(selected_design)
                    in V_hat) and (V_hat[hash(selected_design)] > -2.0 + 1e-3):
                repeated = True
                repeated_cnt += 1

            reward, best_seed = -np.inf, None

            for _ in range(args.num_eval):
                _, rew = env.get_reward(selected_design)
                if rew > reward:
                    reward, best_seed = rew, env.last_opt_seed

            t_mpc += time.time() - t0

            # save the design and the reward in the list
            designs.append(selected_rule_seq)
            design_rewards.append(reward)
            design_opt_seeds.append(best_seed)

            # update best design
            if reward > best_reward:
                best_design, best_reward = selected_rule_seq, reward
                print_info(
                    'new best: reward = {:.4f}, predicted reward = {:.4f}, num_samples = {}'
                    .format(reward, selected_reward, num_samples))

            t0 = time.time()

            # update V_hat for the valid design
            update_Vhat(args, V_hat, selected_state_seq, reward)

            # update states pool for the valid design
            update_states_pool(states_pool, selected_state_seq, states_set,
                               V_hat)

            t_update += time.time() - t0

            t0 = time.time()

            # optimize
            V.train()
            total_loss = 0.0
            for _ in range(args.opt_iter):
                minibatch = states_pool.sample(
                    min(len(states_pool), args.batch_size))

                train_adj_matrix, train_features, train_masks, train_reward = [], [], [], []
                max_nodes = 0
                for robot_graph in minibatch:
                    hash_key = hash(robot_graph)
                    target_reward = V_hat[hash_key]
                    # adj_matrix, features, masks = preprocessor.preprocess(robot_graph)
                    adj_matrix, features, _ = preprocessor.preprocess(
                        robot_graph)
                    max_nodes = max(max_nodes, len(features))
                    train_adj_matrix.append(adj_matrix)
                    train_features.append(features)
                    # train_masks.append(masks)
                    train_reward.append(target_reward)
                for i in range(len(minibatch)):
                    train_adj_matrix[i], train_features[i], masks = \
                        preprocessor.pad_graph(train_adj_matrix[i], train_features[i], max_nodes)
                    train_masks.append(masks)

                train_adj_matrix_torch = torch.tensor(train_adj_matrix)
                train_features_torch = torch.tensor(train_features)
                train_masks_torch = torch.tensor(train_masks)
                train_reward_torch = torch.tensor(train_reward)

                optimizer.zero_grad()
                output, loss_link, loss_entropy = V(train_features_torch,
                                                    train_adj_matrix_torch,
                                                    train_masks_torch)
                loss = F.mse_loss(output[:, 0], train_reward_torch)
                loss.backward()
                total_loss += loss.item()
                optimizer.step()

            t_opt += time.time() - t0

            t_end = time.time()

            t_sample_sum += t_sample

            # logging
            if (epoch + 1
                ) % args.log_interval == 0 or epoch + 1 == args.num_iterations:
                iter_save_dir = os.path.join(args.save_dir,
                                             '{}'.format(epoch + 1))
                os.makedirs(os.path.join(iter_save_dir), exist_ok=True)
                # save model
                save_path = os.path.join(iter_save_dir, 'V_model.pt')
                torch.save(V.state_dict(), save_path)
                # save V_hat
                save_path = os.path.join(iter_save_dir, 'V_hat')
                fp = open(save_path, 'wb')
                pickle.dump(V_hat, fp)
                fp.close()

            # save explored design and its reward
            fp_csv = open(design_csv_path, 'a')
            fieldnames = ['rule_seq', 'reward', 'opt_seed']
            writer = csv.DictWriter(fp_csv, fieldnames=fieldnames)
            for i in range(last_checkpoint + 1, len(designs)):
                writer.writerow({
                    'rule_seq': str(designs[i]),
                    'reward': design_rewards[i],
                    'opt_seed': design_opt_seeds[i]
                })
            last_checkpoint = len(designs) - 1
            fp_csv.close()

            epoch_rew_his.append(reward)

            avg_loss = total_loss / args.opt_iter
            len_his = min(len(epoch_rew_his), 30)
            avg_reward = np.sum(epoch_rew_his[-len_his:]) / len_his
            prediction_error_sum += (selected_reward - reward)**2
            avg_prediction_error = prediction_error_sum / (epoch + 1)

            if repeated:
                print_white('Epoch {:4}: T_sample = {:5.2f}, T_update = {:5.2f}, T_mpc = {:5.2f}, T_opt = {:5.2f}, eps = {:5.3f}, eps_sample = {:5.3f}, #samples = {:2}, training loss = {:7.4f}, pred_error = {:6.4f}, predicted_reward = {:6.4f}, reward = {:6.4f}, last 30 epoch reward = {:6.4f}, best reward = {:6.4f}'.format(\
                    epoch, t_sample, t_update, t_mpc, t_opt, eps, eps_sample, num_samples, \
                    avg_loss, avg_prediction_error, selected_reward, reward, avg_reward, best_reward))
            else:
                print_warning('Epoch {:4}: T_sample = {:5.2f}, T_update = {:5.2f}, T_mpc = {:5.2f}, T_opt = {:5.2f}, eps = {:5.3f}, eps_sample = {:5.3f}, #samples = {:2}, training loss = {:7.4f}, pred_error = {:6.4f}, predicted_reward = {:6.4f}, reward = {:6.4f}, last 30 epoch reward = {:6.4f}, best reward = {:6.4f}'.format(\
                    epoch, t_sample, t_update, t_mpc, t_opt, eps, eps_sample, num_samples, \
                    avg_loss, avg_prediction_error, selected_reward, reward, avg_reward, best_reward))

            fp_log = open(os.path.join(args.save_dir, 'log.txt'), 'a')
            fp_log.write('eps = {:.4f}, eps_sample = {:.4f}, num_samples = {}, T_sample = {:4f}, T_update = {:4f}, T_mpc = {:.4f}, T_opt = {:.4f}, loss = {:.4f}, predicted_reward = {:.4f}, reward = {:.4f}, avg_reward = {:.4f}\n'.format(\
                eps, eps_sample, num_samples, t_sample, t_update, t_mpc, t_opt, avg_loss, selected_reward, reward, avg_reward))
            fp_log.close()

            if (epoch + 1) % args.log_interval == 0:
                print_info(
                    'Avg sampling time for last {} epoch: {:.4f} second'.
                    format(args.log_interval,
                           t_sample_sum / args.log_interval))
                t_sample_sum = 0.
                print_info('size of states_pool = {}'.format(len(states_pool)))
                print_info(
                    '#valid samples = {}, #invalid samples = {}, #valid / #invalid = {}'
                    .format(
                        num_valid_samples, num_invalid_samples,
                        num_valid_samples / num_invalid_samples
                        if num_invalid_samples > 0 else 10000.0))
                print_info(
                    'Invalid samples: #no_action_samples = {}, #step_exceeded_samples = {}, #self_collision_samples = {}'
                    .format(no_action_samples, step_exceeded_samples,
                            self_collision_samples))
                max_trials, cnt = 0, 0
                for key in invalid_his.keys():
                    if invalid_his[key] > max_trials:
                        if key not in V_hat:
                            max_trials = invalid_his[key]
                        elif V_hat[key] < -2.0 + 1e-3:
                            max_trials = invalid_his[key]
                    if invalid_his[key] >= args.max_trials:
                        if V_hat[key] < -2.0 + 1e-3:
                            cnt += 1

                print_info(
                    'max invalid_trials = {}, #failed nodes = {}'.format(
                        max_trials, cnt))
                print_info('repeated rate = {}'.format(repeated_cnt /
                                                       (epoch + 1)))

        save_path = os.path.join(args.save_dir, 'model_state_dict_final.pt')
        torch.save(V.state_dict(), save_path)
    else:
        import IPython
        IPython.embed()

        # test
        V.eval()
        print('Start testing')
        test_epoch = 30
        y0 = []
        y1 = []
        x = []
        for ii in range(0, 11):
            eps = 1.0 - 0.1 * ii

            print('------------------------------------------')
            print('eps = ', eps)

            reward_sum = 0.
            best_reward = -np.inf
            for epoch in range(test_epoch):
                t0 = time.time()

                # use e-greedy to sample a design within maximum #steps.
                vaild = False
                while not valid:
                    state = env.reset()
                    rule_seq = []
                    state_seq = [state]
                    for _ in range(args.depth):
                        action, step_type = select_action(env, V, state, eps)
                        if action is None:
                            break
                        rule_seq.append(action)
                        next_state = env.transite(state, action)
                        state_seq.append(next_state)
                        if not has_nonterminals(next_state):
                            valid = True
                            break
                        state = next_state

                _, reward = env.get_reward(state)
                reward_sum += reward
                best_reward = max(best_reward, reward)
                print(
                    f'design {epoch}: reward = {reward}, time = {time.time() - t0}'
                )

            print('test avg reward = ', reward_sum / test_epoch)
            print('best reward found = ', best_reward)
            x.append(eps)
            y0.append(reward_sum / test_epoch)
            y1.append(best_reward)

        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(1, 2, figsize=(10, 5))
        ax[0].plot(x, y0)
        ax[0].set_title('Avg Reward')
        ax[0].set_xlabel('eps')
        ax[0].set_ylabel('reward')

        ax[1].plot(x, y1)
        ax[0].set_title('Best Reward')
        ax[0].set_xlabel('eps')
        ax[0].set_ylabel('reward')

        plt.show()