示例#1
0
 def test_init(self):
     """Cleanup test files if they exist.
     """
     
     pheader={"DATE-OBS":'2018-11-30T12:42:10.442593-05:00',"DOSVER":'SIM'}
     header={"DETECTOR":'SIM',"CAMERA":'b0      ',"FEEVER":'SIM'}
     cfinder = CalibFinder([pheader,header])
     print(cfinder.value("DETECTOR"))
     if cfinder.haskey("BIAS") :
         print(cfinder.findfile("BIAS"))
示例#2
0
    def test_init(self):
        """Cleanup test files if they exist.
        """

        pheader = {
            "DATE-OBS": '2018-11-30T12:42:10.442593-05:00',
            "DOSVER": 'SIM'
        }
        header = {"DETECTOR": 'SIM', "CAMERA": 'b0      ', "FEEVER": 'SIM'}
        cfinder = CalibFinder([pheader, header])
        print(cfinder.value("DETECTOR"))
        if cfinder.haskey("BIAS"):
            print(cfinder.findfile("BIAS"))
示例#3
0
    def run(self, indir):
        '''TODO: document'''

        log = desiutil.log.get_logger()

        results = list()

        infiles = glob.glob(os.path.join(indir, 'qframe-*.fits'))
        if len(infiles) == 0:
            log.error("no qframe in {}".format(indir))
            return None

        for filename in infiles:
            qframe = read_qframe(filename)
            night = int(qframe.meta['NIGHT'])
            expid = int(qframe.meta['EXPID'])
            cam = qframe.meta['CAMERA'][0].upper()
            spectro = int(qframe.meta['CAMERA'][1])

            try:
                cfinder = CalibFinder([qframe.meta])
            except:
                log.error(
                    "failed to find calib for qframe {}".format(filename))
                continue
            if not cfinder.haskey("FIBERFLAT"):
                log.warning(
                    "no known fiberflat for qframe {}".format(filename))
                continue
            fflat = read_fiberflat(cfinder.findfile("FIBERFLAT"))
            tmp = np.median(fflat.fiberflat, axis=1)
            reference_fflat = tmp / np.median(tmp)

            tmp = np.median(qframe.flux, axis=1)
            this_fflat = tmp / np.median(tmp)

            for f, fiber in enumerate(qframe.fibermap["FIBER"]):
                results.append(
                    collections.OrderedDict(NIGHT=night,
                                            EXPID=expid,
                                            SPECTRO=spectro,
                                            CAM=cam,
                                            FIBER=fiber,
                                            FIBERFLAT=this_fflat[f],
                                            REF_FIBERFLAT=reference_fflat[f]))

        if len(results) == 0:
            return None
        return Table(results, names=results[0].keys())
def psf_fit(idx,outdir,cam):

    if os.path.isfile('{}/psf-{}-{}.fits'.format(outdir,cam,idx)):
        print('INFO: already done')
        return

    h = fitsio.FITS('{}/preproc-{}-{}.fits'.format(outdir,cam,idx))
    head = h['IMAGE'].read_header()
    cfinder = CalibFinder([head])
    p = cfinder.findfile('PSF')
    h.close()

    cmd = 'desi_psf_fit'
    cmd += ' -a {}/preproc-{}-{}.fits'.format(outdir,cam,idx)
    cmd += ' --in-psf {}'.format(p)
    cmd += ' --out-psf {}/psf-{}-{}.fits'.format(outdir,cam,idx)
    if 'b' in cam:
        cmd += ' --trace-deg-wave 4 --trace-deg-x 4 --legendre-deg-x 4 --legendre-deg-wave 2 --single-bundle'
    elif ('r' in cam) or ('z' in cam):
        cmd += ' --legendre-deg-x 4 --legendre-deg-wave 3 --single-bundle'
    print(cmd)
    subprocess.call(cmd,shell=True)

    return
示例#5
0
plt.subplots_adjust(top=0.97)

for i,cam in enumerate(dic.keys()):

    h = fitsio.FITS(dic[cam]['PATH'])
    head = h['IMAGE'].read_header()
    camName = head['CAMERA'].strip()
    d = h['IMAGE'].read()
    w = h['MASK'].read()==0.
    td = d.copy()
    td[~w] = sp.nan
    h.close()

    if getattr(args,'{}_psf_path'.format(cam)) is None:
        cfinder = CalibFinder([head])
        p = cfinder.findfile('PSF')
    else:
        p = getattr(args,'{}_psf_path'.format(cam))
    dic[cam]['PSF'] = read_xytraceset(p)

    ### image of the PSF
    xmin = min( dic[cam]['PSF'].x_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].x_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    xmax = max( dic[cam]['PSF'].x_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].x_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    ymin = min( dic[cam]['PSF'].y_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].y_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    ymax = max( dic[cam]['PSF'].y_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].y_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    ax[2*i].imshow(td,interpolation='nearest',origin='lower',cmap='hot')
    ax[2*i].set_xlim(sp.floor(xmin-offset),sp.floor(xmax+offset))
    ax[2*i].set_ylim(sp.floor(ymin-offset),sp.floor(ymax+offset))
    ax[2*i].set_ylabel(r'$\mathrm{y-axis}$')

    x = sp.array([ dic[cam]['PSF'].x_vs_wave(f,dic[cam]['LINE']['LINE']) for f in range(fmin-1,fmax+2) ])
示例#6
0
def preproc(rawimage,
            header,
            primary_header,
            bias=True,
            dark=True,
            pixflat=True,
            mask=True,
            bkgsub=False,
            nocosmic=False,
            cosmics_nsig=6,
            cosmics_cfudge=3.,
            cosmics_c2fudge=0.5,
            ccd_calibration_filename=None,
            nocrosstalk=False,
            nogain=False,
            overscan_per_row=False,
            use_overscan_row=False,
            use_savgol=None,
            nodarktrail=False,
            remove_scattered_light=False,
            psf_filename=None,
            bias_img=None):
    '''
    preprocess image using metadata in header

    image = ((rawimage-bias-overscan)*gain)/pixflat

    Args:
        rawimage : 2D numpy array directly from raw data file
        header : dict-like metadata, e.g. from FITS header, with keywords
            CAMERA, BIASSECx, DATASECx, CCDSECx
            where x = A, B, C, D for each of the 4 amplifiers
            (also supports old naming convention 1, 2, 3, 4).
        primary_header: dict-like metadata fit keywords EXPTIME, DOSVER
            DATE-OBS is also required if bias, pixflat, or mask=True

    Optional bias, pixflat, and mask can each be:
        False: don't apply that step
        True: use default calibration data for that night
        ndarray: use that array
        filename (str or unicode): read HDU 0 and use that

    Optional overscan features:
        overscan_per_row : bool,  Subtract the overscan_col values
            row by row from the data.
        use_overscan_row : bool,  Subtract off the overscan_row
            from the data (default: False).  Requires ORSEC in
            the Header
        use_savgol : bool,  Specify whether to use Savitsky-Golay filter for
            the overscan.   (default: False).  Requires use_overscan_row=True
            to have any effect.

    Optional background subtraction with median filtering if bkgsub=True

    Optional disabling of cosmic ray rejection if nocosmic=True
    Optional disabling of dark trail correction if nodarktrail=True

    Optional bias image (testing only) may be provided by bias_img=

    Optional tuning of cosmic ray rejection parameters:
        cosmics_nsig: number of sigma above background required
        cosmics_cfudge: number of sigma inconsistent with PSF required
        cosmics_c2fudge:  fudge factor applied to PSF

    Optional fit and subtraction of scattered light

    Returns Image object with member variables:
        pix : 2D preprocessed image in units of electrons per pixel
        ivar : 2D inverse variance of image
        mask : 2D mask of image (0=good)
        readnoise : 2D per-pixel readnoise of image
        meta : metadata dictionary
        TODO: define what keywords are included

    preprocessing includes the following steps:
        - bias image subtraction
        - overscan subtraction (from BIASSEC* keyword defined regions)
        - readnoise estimation (from BIASSEC* keyword defined regions)
        - gain correction (from GAIN* keywords)
        - pixel flat correction
        - cosmic ray masking
        - propagation of input known bad pixel mask
        - inverse variance estimation

    Notes:

    The bias image is subtracted before any other calculation to remove any
    non-uniformities in the overscan regions prior to calculating overscan
    levels and readnoise.

    The readnoise is an image not just one number per amp, because the pixflat
    image also affects the interpreted readnoise.

    The inverse variance is estimated from the readnoise and the image itself,
    and thus is biased.
    '''
    log = get_logger()

    header = header.copy()

    cfinder = None

    if ccd_calibration_filename is not False:
        cfinder = CalibFinder([header, primary_header],
                              yaml_file=ccd_calibration_filename)

    #- TODO: Check for required keywords first

    #- Subtract bias image
    camera = header['CAMERA'].lower()

    #- convert rawimage to float64 : this is the output format of read_image
    rawimage = rawimage.astype(np.float64)

    # Savgol
    if cfinder and cfinder.haskey("USE_ORSEC"):
        use_overscan_row = cfinder.value("USE_ORSEC")
    if cfinder and cfinder.haskey("SAVGOL"):
        use_savgol = cfinder.value("SAVGOL")

    # Set bias image, as desired
    if bias_img is None:
        bias = get_calibration_image(cfinder, "BIAS", bias)
    else:
        bias = bias_img

    if bias is not False:  #- it's an array
        if bias.shape == rawimage.shape:
            log.info("subtracting bias")
            rawimage = rawimage - bias
        else:
            raise ValueError('shape mismatch bias {} != rawimage {}'.format(
                bias.shape, rawimage.shape))

    #- Check if this file uses amp names 1,2,3,4 (old) or A,B,C,D (new)
    amp_ids = get_amp_ids(header)

    #- Double check that we have the necessary keywords
    missing_keywords = list()
    for prefix in ['CCDSEC', 'BIASSEC']:
        for amp in amp_ids:
            key = prefix + amp
            if not key in header:
                log.error('No {} keyword in header'.format(key))
                missing_keywords.append(key)

    if len(missing_keywords) > 0:
        raise KeyError("Missing keywords {}".format(
            ' '.join(missing_keywords)))

    #- Output arrays
    ny = 0
    nx = 0
    for amp in amp_ids:
        yy, xx = parse_sec_keyword(header['CCDSEC%s' % amp])
        ny = max(ny, yy.stop)
        nx = max(nx, xx.stop)
    image = np.zeros((ny, nx))

    readnoise = np.zeros_like(image)

    #- Load mask
    mask = get_calibration_image(cfinder, "MASK", mask)

    if mask is False:
        mask = np.zeros(image.shape, dtype=np.int32)
    else:
        if mask.shape != image.shape:
            raise ValueError('shape mismatch mask {} != image {}'.format(
                mask.shape, image.shape))

    #- Load dark
    dark = get_calibration_image(cfinder, "DARK", dark)

    if dark is not False:
        if dark.shape != image.shape:
            log.error('shape mismatch dark {} != image {}'.format(
                dark.shape, image.shape))
            raise ValueError('shape mismatch dark {} != image {}'.format(
                dark.shape, image.shape))

        if cfinder and cfinder.haskey("EXPTIMEKEY"):
            exptime_key = cfinder.value("EXPTIMEKEY")
            log.info("Using exposure time keyword %s for dark normalization" %
                     exptime_key)
        else:
            exptime_key = "EXPTIME"
        exptime = primary_header[exptime_key]

        log.info("Multiplying dark by exptime %f" % (exptime))
        dark *= exptime

    for amp in amp_ids:
        # Grab the sections
        ov_col = parse_sec_keyword(header['BIASSEC' + amp])
        if 'ORSEC' + amp in header.keys():
            ov_row = parse_sec_keyword(header['ORSEC' + amp])
        elif use_overscan_row:
            log.error('No ORSEC{} keyword; not using overscan_row'.format(amp))
            use_overscan_row = False

        if nogain:
            gain = 1.
        else:
            #- Initial teststand data may be missing GAIN* keywords; don't crash
            if 'GAIN' + amp in header:
                gain = header['GAIN' + amp]  #- gain = electrons / ADU
            else:
                if cfinder and cfinder.haskey('GAIN' + amp):
                    gain = float(cfinder.value('GAIN' + amp))
                    log.info('Using GAIN{}={} from calibration data'.format(
                        amp, gain))
                else:
                    gain = 1.0
                    log.warning(
                        'Missing keyword GAIN{} in header and nothing in calib data; using {}'
                        .format(amp, gain))

        #- Add saturation level
        if 'SATURLEV' + amp in header:
            saturlev = header['SATURLEV' + amp]  # in electrons
        else:
            if cfinder and cfinder.haskey('SATURLEV' + amp):
                saturlev = float(cfinder.value('SATURLEV' + amp))
                log.info('Using SATURLEV{}={} from calibration data'.format(
                    amp, saturlev))
            else:
                saturlev = 200000
                log.warning(
                    'Missing keyword SATURLEV{} in header and nothing in calib data; using 200000'
                    .format(amp, saturlev))

        # Generate the overscan images
        raw_overscan_col = rawimage[ov_col].copy()

        if use_overscan_row:
            raw_overscan_row = rawimage[ov_row].copy()
            overscan_row = np.zeros_like(raw_overscan_row)

            # Remove overscan_col from overscan_row
            raw_overscan_squared = rawimage[ov_row[0], ov_col[1]].copy()
            for row in range(raw_overscan_row.shape[0]):
                o, r = _overscan(raw_overscan_squared[row])
                overscan_row[row] = raw_overscan_row[row] - o

        # Now remove the overscan_col
        nrows = raw_overscan_col.shape[0]
        log.info("nrows in overscan=%d" % nrows)
        overscan_col = np.zeros(nrows)
        rdnoise = np.zeros(nrows)
        if (cfinder and cfinder.haskey('OVERSCAN' + amp)
                and cfinder.value("OVERSCAN" + amp).upper()
                == "PER_ROW") or overscan_per_row:
            log.info(
                "Subtracting overscan per row for amplifier %s of camera %s" %
                (amp, camera))
            for j in range(nrows):
                if np.isnan(np.sum(overscan_col[j])):
                    log.warning(
                        "NaN values in row %d of overscan of amplifier %s of camera %s"
                        % (j, amp, camera))
                    continue
                o, r = _overscan(raw_overscan_col[j])
                #log.info("%d %f %f"%(j,o,r))
                overscan_col[j] = o
                rdnoise[j] = r
        else:
            log.info(
                "Subtracting average overscan for amplifier %s of camera %s" %
                (amp, camera))
            o, r = _overscan(raw_overscan_col)
            overscan_col += o
            rdnoise += r

        rdnoise *= gain
        median_rdnoise = np.median(rdnoise)
        median_overscan = np.median(overscan_col)
        log.info("Median rdnoise and overscan= %f %f" %
                 (median_rdnoise, median_overscan))

        kk = parse_sec_keyword(header['CCDSEC' + amp])
        for j in range(nrows):
            readnoise[kk][j] = rdnoise[j]

        header['OVERSCN' + amp] = (median_overscan, 'ADUs (gain not applied)')
        if gain != 1:
            rdnoise_message = 'electrons (gain is applied)'
            gain_message = 'e/ADU (gain applied to image)'
        else:
            rdnoise_message = 'ADUs (gain not applied)'
            gain_message = 'gain not applied to image'
        header['OBSRDN' + amp] = (median_rdnoise, rdnoise_message)
        header['GAIN' + amp] = (gain, gain_message)

        #- Warn/error if measured readnoise is very different from expected if exists
        if 'RDNOISE' + amp in header:
            expected_readnoise = header['RDNOISE' + amp]
            if median_rdnoise < 0.5 * expected_readnoise:
                log.error(
                    'Amp {} measured readnoise {:.2f} < 0.5 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise < 0.9 * expected_readnoise:
                log.warning(
                    'Amp {} measured readnoise {:.2f} < 0.9 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise > 2.0 * expected_readnoise:
                log.error(
                    'Amp {} measured readnoise {:.2f} > 2 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise > 1.2 * expected_readnoise:
                log.warning(
                    'Amp {} measured readnoise {:.2f} > 1.2 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
        #else:
        #    log.warning('Expected readnoise keyword {} missing'.format('RDNOISE'+amp))

        log.info("Measured readnoise for AMP %s = %f" % (amp, median_rdnoise))

        #- subtract overscan from data region and apply gain
        jj = parse_sec_keyword(header['DATASEC' + amp])

        data = rawimage[jj].copy()
        # Subtract columns
        for k in range(nrows):
            data[k] -= overscan_col[k]
        # And now the rows
        if use_overscan_row:
            # Savgol?
            if use_savgol:
                log.info("Using savgol")
                collapse_oscan_row = np.zeros(overscan_row.shape[1])
                for col in range(overscan_row.shape[1]):
                    o, _ = _overscan(overscan_row[:, col])
                    collapse_oscan_row[col] = o
                oscan_row = _savgol_clipped(collapse_oscan_row, niter=0)
                oimg_row = np.outer(np.ones(data.shape[0]), oscan_row)
                data -= oimg_row
            else:
                o, r = _overscan(overscan_row)
                data -= o

        #- apply saturlev (defined in ADU), prior to multiplication by gain
        saturated = (rawimage[jj] >= saturlev)
        mask[kk][saturated] |= ccdmask.SATURATED

        #- ADC to electrons
        image[kk] = data * gain

    if not nocrosstalk:
        #- apply cross-talk

        # the ccd looks like :
        # C D
        # A B
        # for cross talk, we need a symmetric 4x4 flip_matrix
        # of coordinates ABCD giving flip of both axis
        # when computing crosstalk of
        #    A   B   C   D
        #
        # A  AA  AB  AC  AD
        # B  BA  BB  BC  BD
        # C  CA  CB  CC  CD
        # D  DA  DB  DC  BB
        # orientation_matrix_defines change of orientation
        #
        fip_axis_0 = np.array([[1, 1, -1, -1], [1, 1, -1, -1], [-1, -1, 1, 1],
                               [-1, -1, 1, 1]])
        fip_axis_1 = np.array([[1, -1, 1, -1], [-1, 1, -1, 1], [1, -1, 1, -1],
                               [-1, 1, -1, 1]])

        for a1 in range(len(amp_ids)):
            amp1 = amp_ids[a1]
            ii1 = parse_sec_keyword(header['CCDSEC' + amp1])
            a1flux = image[ii1]
            #a1mask=mask[ii1]

            for a2 in range(len(amp_ids)):
                if a1 == a2:
                    continue
                amp2 = amp_ids[a2]
                if cfinder is None: continue
                if not cfinder.haskey("CROSSTALK%s%s" % (amp1, amp2)): continue
                crosstalk = cfinder.value("CROSSTALK%s%s" % (amp1, amp2))
                if crosstalk == 0.: continue
                log.info("Correct for crosstalk=%f from AMP %s into %s" %
                         (crosstalk, amp1, amp2))
                a12flux = crosstalk * a1flux.copy()
                #a12mask=a1mask.copy()
                if fip_axis_0[a1, a2] == -1:
                    a12flux = a12flux[::-1]
                    #a12mask=a12mask[::-1]
                if fip_axis_1[a1, a2] == -1:
                    a12flux = a12flux[:, ::-1]
                    #a12mask=a12mask[:,::-1]
                ii2 = parse_sec_keyword(header['CCDSEC' + amp2])
                image[ii2] -= a12flux
                # mask[ii2]  |= a12mask (not sure we really need to propagate the mask)

    #- Poisson noise variance (prior to dark subtraction and prior to pixel flat field)
    #- This is biasing, but that's what we have for now
    poisson_var = image.clip(0)

    #- subtract dark after multiplication by gain
    if dark is not False:
        log.info("subtracting dark for amp %s" % amp)
        image -= dark

    #- Correct for dark trails if any
    if not nodarktrail and cfinder is not None:
        for amp in amp_ids:
            if cfinder.haskey("DARKTRAILAMP%s" % amp):
                amplitude = cfinder.value("DARKTRAILAMP%s" % amp)
                width = cfinder.value("DARKTRAILWIDTH%s" % amp)
                ii = _parse_sec_keyword(header["CCDSEC" + amp])
                log.info(
                    "Removing dark trails for amplifier %s with width=%3.1f and amplitude=%5.4f"
                    % (amp, width, amplitude))
                correct_dark_trail(image,
                                   ii,
                                   left=((amp == "B") | (amp == "D")),
                                   width=width,
                                   amplitude=amplitude)

    #- Divide by pixflat image
    pixflat = get_calibration_image(cfinder, "PIXFLAT", pixflat)
    if pixflat is not False:
        if pixflat.shape != image.shape:
            raise ValueError('shape mismatch pixflat {} != image {}'.format(
                pixflat.shape, image.shape))

        almost_zero = 0.001

        if np.all(pixflat > almost_zero):
            image /= pixflat
            readnoise /= pixflat
            poisson_var /= pixflat**2
        else:
            good = (pixflat > almost_zero)
            image[good] /= pixflat[good]
            readnoise[good] /= pixflat[good]
            poisson_var[good] /= pixflat[good]**2
            mask[~good] |= ccdmask.PIXFLATZERO

        lowpixflat = (0 < pixflat) & (pixflat < 0.1)
        if np.any(lowpixflat):
            mask[lowpixflat] |= ccdmask.PIXFLATLOW

    #- Inverse variance, estimated directly from the data (BEWARE: biased!)
    var = poisson_var + readnoise**2
    ivar = np.zeros(var.shape)
    ivar[var > 0] = 1.0 / var[var > 0]

    #- Ridiculously high readnoise is bad
    mask[readnoise > 100] |= ccdmask.BADREADNOISE

    if bkgsub:
        bkg = _background(image, header)
        image -= bkg

    img = Image(image,
                ivar=ivar,
                mask=mask,
                meta=header,
                readnoise=readnoise,
                camera=camera)

    #- update img.mask to mask cosmic rays

    if not nocosmic:
        cosmics.reject_cosmic_rays(img,
                                   nsig=cosmics_nsig,
                                   cfudge=cosmics_cfudge,
                                   c2fudge=cosmics_c2fudge)

    if remove_scattered_light:
        if psf_filename is None:
            psf_filename = cfinder.findfile("PSF")
        xyset = read_xytraceset(psf_filename)
        img.pix -= model_scattered_light(img, xyset)

    return img
示例#7
0
文件: qlconfig.py 项目: sdss/lvmspec
    def expand_config(self):
        """
        config: desispec.quicklook.qlconfig.Config object
        """
        self.log.debug("Building Full Configuration")
        self.debuglevel = self.conf["Debuglevel"]
        self.period = self.conf["Period"]
        self.timeout = self.conf["Timeout"]

        #- some global variables:
        self.rawfile = findfile("raw",
                                night=self.night,
                                expid=self.expid,
                                camera=self.camera,
                                rawdata_dir=self.rawdata_dir,
                                specprod_dir=self.specprod_dir)

        self.fibermap = None
        if self.flavor != 'bias' and self.flavor != 'dark':
            self.fibermap = findfile("fibermap",
                                     night=self.night,
                                     expid=self.expid,
                                     camera=self.camera,
                                     rawdata_dir=self.rawdata_dir,
                                     specprod_dir=self.specprod_dir)

        hdulist = pyfits.open(self.rawfile)
        primary_header = hdulist[0].header
        camera_header = hdulist[self.camera].header

        self.program = primary_header['PROGRAM']

        hdulist.close()

        cfinder = CalibFinder([camera_header, primary_header])
        if self.flavor == 'dark' or self.flavor == 'bias' or self.flavor == 'zero':
            self.calibpsf = None
        else:
            self.calibpsf = cfinder.findfile("PSF")

        if self.psfid is None:
            self.psf_filename = findfile('psf',
                                         night=self.night,
                                         expid=self.expid,
                                         camera=self.camera,
                                         rawdata_dir=self.rawdata_dir,
                                         specprod_dir=self.specprod_dir)
        else:
            self.psf_filename = findfile('psf',
                                         night=self.night,
                                         expid=self.psfid,
                                         camera=self.camera,
                                         rawdata_dir=self.rawdata_dir,
                                         specprod_dir=self.specprod_dir)

        if self.flavor == 'dark' or self.flavor == 'bias' or self.flavor == 'zero':
            self.fiberflat = None
        elif self.flatid is None and self.flavor != 'flat':
            self.fiberflat = cfinder.findfile("FIBERFLAT")
        elif self.flavor == 'flat':
            self.fiberflat = findfile('fiberflat',
                                      night=self.night,
                                      expid=self.expid,
                                      camera=self.camera,
                                      rawdata_dir=self.rawdata_dir,
                                      specprod_dir=self.specprod_dir)
        else:
            self.fiberflat = findfile('fiberflat',
                                      night=self.night,
                                      expid=self.flatid,
                                      camera=self.camera,
                                      rawdata_dir=self.rawdata_dir,
                                      specprod_dir=self.specprod_dir)

        #SE: QL no longer get references from a template or merged json
        #- Get reference metrics from template json file
        self.reference = None

        outconfig = {}
        outconfig['Night'] = self.night
        outconfig['Program'] = self.program
        outconfig['Flavor'] = self.flavor
        outconfig['Camera'] = self.camera
        outconfig['Expid'] = self.expid
        outconfig['DumpIntermediates'] = self.dumpintermediates
        outconfig['FiberMap'] = self.fibermap
        outconfig['Period'] = self.period

        pipeline = []
        for ii, PA in enumerate(self.palist):
            pipe = {}
            pipe['PA'] = {
                'ClassName': PA,
                'ModuleName': self.pamodule,
                'kwargs': self.paargs[PA]
            }
            pipe['QAs'] = []
            for jj, QA in enumerate(self.qalist[PA]):
                pipe_qa = {
                    'ClassName': QA,
                    'ModuleName': self.qamodule,
                    'kwargs': self.qaargs[QA]
                }
                pipe['QAs'].append(pipe_qa)
            pipe['StepName'] = PA
            pipeline.append(pipe)

        outconfig['PipeLine'] = pipeline
        outconfig['RawImage'] = self.rawfile
        outconfig['singleqa'] = self.singqa
        outconfig['Timeout'] = self.timeout
        outconfig['FiberFlatFile'] = self.fiberflat
        outconfig['PlotConfig'] = self.plotconf

        #- Check if all the files exist for this QL configuraion
        check_config(outconfig, self.singqa)
        return outconfig
示例#8
0
def main(args=None):

    if args is None:
        args = parse()
    elif isinstance(args, (list, tuple)):
        args = parse(args)

    t0 = time.time()
    log = get_logger()

    # guess if it is a preprocessed or a raw image
    hdulist = fits.open(args.image)
    is_input_preprocessed = ("IMAGE" in hdulist) & ("IVAR" in hdulist)
    primary_header = hdulist[0].header
    hdulist.close()

    if is_input_preprocessed:
        image = read_image(args.image)
    else:
        if args.camera is None:
            print(
                "ERROR: Need to specify camera to open a raw fits image (with all cameras in different fits HDUs)"
            )
            print(
                "Try adding the option '--camera xx', with xx in {brz}{0-9}, like r7,  or type 'desi_qproc --help' for more options"
            )
            sys.exit(12)
        image = read_raw(args.image, args.camera, fill_header=[
            1,
        ])

    if args.auto:
        log.debug("AUTOMATIC MODE")
        try:
            night = image.meta['NIGHT']
            if not 'EXPID' in image.meta:
                if 'EXPNUM' in image.meta:
                    log.warning('using EXPNUM {} for EXPID'.format(
                        image.meta['EXPNUM']))
                    image.meta['EXPID'] = image.meta['EXPNUM']
            expid = image.meta['EXPID']
        except KeyError as e:
            log.error(
                "Need at least NIGHT and EXPID (or EXPNUM) to run in auto mode. Retry without the --auto option."
            )
            log.error(str(e))
            sys.exit(12)

        indir = os.path.dirname(args.image)
        if args.fibermap is None:
            filename = '{}/fibermap-{:08d}.fits'.format(indir, expid)
            if os.path.isfile(filename):
                log.debug("auto-mode: found a fibermap, {}, using it!".format(
                    filename))
                args.fibermap = filename
        if args.output_preproc is None:
            if not is_input_preprocessed:
                args.output_preproc = '{}/preproc-{}-{:08d}.fits'.format(
                    args.auto_output_dir, args.camera.lower(), expid)
                log.debug("auto-mode: will write preproc in " +
                          args.output_preproc)
            else:
                log.debug(
                    "auto-mode: will not write preproc because input is a preprocessed image"
                )

        if args.auto_output_dir != '.':
            if not os.path.isdir(args.auto_output_dir):
                log.debug("auto-mode: creating directory " +
                          args.auto_output_dir)
                os.makedirs(args.auto_output_dir)

    if args.output_preproc is not None:
        write_image(args.output_preproc, image)

    cfinder = None

    if args.psf is None:
        if cfinder is None:
            cfinder = CalibFinder([image.meta, primary_header])
        args.psf = cfinder.findfile("PSF")
        log.info(" Using PSF {}".format(args.psf))

    tset = read_xytraceset(args.psf)

    # add fibermap
    if args.fibermap:
        if os.path.isfile(args.fibermap):
            fibermap = read_fibermap(args.fibermap)
        else:
            log.error("no fibermap file {}".format(args.fibermap))
            fibermap = None
    else:
        fibermap = None

    if "OBSTYPE" in image.meta:
        obstype = image.meta["OBSTYPE"].upper()
        image.meta["OBSTYPE"] = obstype  # make sure it's upper case
        qframe = None
    else:
        log.warning("No OBSTYPE keyword, trying to guess ...")
        qframe = qproc_boxcar_extraction(tset,
                                         image,
                                         width=args.width,
                                         fibermap=fibermap)
        obstype = check_qframe_flavor(
            qframe, input_flavor=image.meta["FLAVOR"]).upper()
        image.meta["OBSTYPE"] = obstype

    log.info("OBSTYPE = '{}'".format(obstype))

    if args.auto:

        # now set the things to do
        if obstype == "SKY" or obstype == "TWILIGHT" or obstype == "SCIENCE":

            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.apply_fiberflat = True
            args.skysub = True
            args.output_skyframe = '{}/qsky-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.fluxcalib = True
            args.outframe = '{}/qcframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)

        elif obstype == "ARC" or obstype == "TESTARC":

            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.compute_lsf_sigma = True

        elif obstype == "FLAT" or obstype == "TESTFLAT":
            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.compute_fiberflat = '{}/qfiberflat-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)

    if args.shift_psf:

        # using the trace shift script
        if args.auto:
            options = option_list({
                "psf":
                args.psf,
                "image":
                "dummy",
                "outpsf":
                "dummy",
                "continuum": ((obstype == "FLAT") | (obstype == "TESTFLAT")),
                "sky": ((obstype == "SCIENCE") | (obstype == "SKY"))
            })
        else:
            options = option_list({
                "psf": args.psf,
                "image": "dummy",
                "outpsf": "dummy"
            })
        tmp_args = trace_shifts_script.parse(options=options)
        tset = trace_shifts_script.fit_trace_shifts(image=image, args=tmp_args)

    qframe = qproc_boxcar_extraction(tset,
                                     image,
                                     width=args.width,
                                     fibermap=fibermap)

    if tset.meta is not None:
        # add traceshift info in the qframe, this will be saved in the qframe header
        if qframe.meta is None:
            qframe.meta = dict()
        for k in tset.meta.keys():
            qframe.meta[k] = tset.meta[k]

    if args.output_rawframe is not None:
        write_qframe(args.output_rawframe, qframe)
        log.info("wrote raw extracted frame in {}".format(
            args.output_rawframe))

    if args.compute_lsf_sigma:
        tset = process_arc(qframe, tset, linelist=None, npoly=2, nbins=2)

    if args.output_psf is not None:
        for k in qframe.meta:
            if k not in tset.meta:
                tset.meta[k] = qframe.meta[k]
        write_xytraceset(args.output_psf, tset)

    if args.compute_fiberflat is not None:
        fiberflat = qproc_compute_fiberflat(qframe)
        #write_qframe(args.compute_fiberflat,qflat)
        write_fiberflat(args.compute_fiberflat, fiberflat, header=qframe.meta)
        log.info("wrote fiberflat in {}".format(args.compute_fiberflat))

    if args.apply_fiberflat or args.input_fiberflat:

        if args.input_fiberflat is None:
            if cfinder is None:
                cfinder = CalibFinder([image.meta, primary_header])
            try:
                args.input_fiberflat = cfinder.findfile("FIBERFLAT")
            except KeyError as e:
                log.error("no FIBERFLAT for this spectro config")
                sys.exit(12)
        log.info("applying fiber flat {}".format(args.input_fiberflat))
        flat = read_fiberflat(args.input_fiberflat)
        qproc_apply_fiberflat(qframe, flat)

    if args.skysub:
        log.info("sky subtraction")
        if args.output_skyframe is not None:
            skyflux = qproc_sky_subtraction(qframe, return_skymodel=True)
            sqframe = QFrame(qframe.wave, skyflux, np.ones(skyflux.shape))
            write_qframe(args.output_skyframe, sqframe)
            log.info("wrote sky model in {}".format(args.output_skyframe))
        else:
            qproc_sky_subtraction(qframe)

    if args.fluxcalib:
        if cfinder is None:
            cfinder = CalibFinder([image.meta, primary_header])
        # check for flux calib
        if cfinder.haskey("FLUXCALIB"):
            fluxcalib_filename = cfinder.findfile("FLUXCALIB")
            fluxcalib = read_average_flux_calibration(fluxcalib_filename)
            log.info("read average calib in {}".format(fluxcalib_filename))
            seeing = qframe.meta["SEEING"]
            airmass = qframe.meta["AIRMASS"]
            exptime = qframe.meta["EXPTIME"]
            exposure_calib = fluxcalib.value(seeing=seeing, airmass=airmass)
            for q in range(qframe.nspec):
                fiber_calib = np.interp(qframe.wave[q], fluxcalib.wave,
                                        exposure_calib) * exptime
                inv_calib = (fiber_calib > 0) / (fiber_calib +
                                                 (fiber_calib == 0))
                qframe.flux[q] *= inv_calib
                qframe.ivar[q] *= fiber_calib**2 * (fiber_calib > 0)

            # add keyword in header giving the calibration factor applied at a reference wavelength
            band = qframe.meta["CAMERA"].upper()[0]
            if band == "B":
                refwave = 4500
            elif band == "R":
                refwave = 6500
            else:
                refwave = 8500
            calvalue = np.interp(refwave, fluxcalib.wave,
                                 exposure_calib) * exptime
            qframe.meta["CALWAVE"] = refwave
            qframe.meta["CALVALUE"] = calvalue
        else:
            log.error(
                "Cannot calibrate fluxes because no FLUXCALIB keywork in calibration files"
            )

    fibers = parse_fibers(args.fibers)
    if fibers is None:
        fibers = qframe.flux.shape[0]
    else:
        ii = np.arange(qframe.fibers.size)[np.in1d(qframe.fibers, fibers)]
        if ii.size == 0:
            log.error("no such fibers in frame,")
            log.error("fibers are in range [{}:{}]".format(
                qframe.fibers[0], qframe.fibers[-1] + 1))
            sys.exit(12)
        qframe = qframe[ii]

    if args.outframe is not None:
        write_qframe(args.outframe, qframe)
        log.info("wrote {}".format(args.outframe))

    t1 = time.time()
    log.info("all done in {:3.1f} sec".format(t1 - t0))

    if args.plot:
        log.info("plotting {} spectra".format(qframe.wave.shape[0]))

        import matplotlib.pyplot as plt
        fig = plt.figure()
        for i in range(qframe.wave.shape[0]):
            j = (qframe.ivar[i] > 0)
            plt.plot(qframe.wave[i, j], qframe.flux[i, j])
        plt.grid()
        plt.xlabel("wavelength")
        plt.ylabel("flux")
        plt.show()
示例#9
0
     mjdobs = pheader["MJD-OBS"]
 else :
     mjdobs = 0.
 if "DATE-OBS" in pheader :
     try : 
         dateobs = Time(pheader["DATE-OBS"]).mjd
     except :
         dateobs = 0.
 else :
     dateobs = 0.
 img=img.astype(float)
 sub = None
 if not args.nobias :
     filename=args.bias
     if filename is None and cfinder is not None and cfinder.haskey("BIAS") :
         filename=cfinder.findfile("BIAS")
     if filename is not None :
         print("subtracting bias",filename)
         bias=fitsio.read(filename)
         sub = img - bias
 if sub is None :
     sub = img # we don't do bias subtraction
        
 rms_scale = 1.
 if args.gradient :
     tmp = sub[:,1:] - sub[:,:-1]
     sub[:,1:] = tmp
     sub[:,0]  = 0
     rms_scale = 1./np.sqrt(2.)
 i=0
 x=np.zeros(3+4*6).astype(float)