def run_task(step, rawdir, proddir, grph, opts, comm=None): ''' Run a single pipeline task. This function takes a truncated graph containing a single node of the specified type and the nodes representing the inputs for the task. Args: step (str): the pipeline step type. rawdir (str): the path to the raw data directory. proddir (str): the path to the production directory. grph (dict): the truncated dependency graph. opts (dict): the global options dictionary. comm (mpi4py.Comm): the optional MPI communicator to use. Returns: Nothing. ''' if step not in step_file_types.keys(): raise ValueError("step type {} not recognized".format(step)) log = get_logger() # Verify that there is only a single node in the graph # of the desired step. The graph should already have # been sliced before calling this task. nds = [] for name, nd in grph.items(): if nd['type'] in step_file_types[step]: nds.append(name) if len(nds) != 1: raise RuntimeError("run_task should only be called with a graph containing a single node to process") name = nds[0] node = grph[name] nproc = 1 rank = 0 if comm is not None: nproc = comm.size rank = comm.rank # step-specific operations if step == 'bootcalib': # The inputs to this step include *all* the arcs and flats for the # night. Here we sort them into the list of arcs and the list of # flats, and simply choose the first one of each. arcs = [] flats = [] for input in node['in']: inode = grph[input] if inode['flavor'] == 'arc': arcs.append(input) elif inode['flavor'] == 'flat': flats.append(input) if len(arcs) == 0: raise RuntimeError("no arc images found!") if len(flats) == 0: raise RuntimeError("no flat images found!") firstarc = sorted(arcs)[0] firstflat = sorted(flats)[0] # build list of options arcpath = graph_path_pix(rawdir, firstarc) flatpath = graph_path_pix(rawdir, firstflat) outpath = graph_path_psfboot(proddir, name) qafile, qafig = qa_path(outpath) options = {} options['fiberflat'] = flatpath options['arcfile'] = arcpath options['qafile'] = qafile ### options['qafig'] = qafig options['outfile'] = outpath options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_bootcalib'] com.extend(optarray) log.debug(" ".join(com)) args = bootcalib.parse(optarray) sys.stdout.flush() if rank == 0: #print("proc {} call bootcalib main".format(rank)) #sys.stdout.flush() bootcalib.main(args) #print("proc {} returned from bootcalib main".format(rank)) #sys.stdout.flush() #print("proc {} finish runtask bootcalib".format(rank)) #sys.stdout.flush() elif step == 'specex': # get input files pix = [] boot = [] for input in node['in']: inode = grph[input] if inode['type'] == 'psfboot': boot.append(input) elif inode['type'] == 'pix': pix.append(input) if len(boot) != 1: raise RuntimeError("specex needs exactly one psfboot file") if len(pix) == 0: raise RuntimeError("specex needs exactly one image file") bootfile = graph_path_psfboot(proddir, boot[0]) imgfile = graph_path_pix(rawdir, pix[0]) outfile = graph_path_psf(proddir, name) outdir = os.path.dirname(outfile) options = {} options['input'] = imgfile options['bootfile'] = bootfile options['output'] = outfile if log.getEffectiveLevel() == desispec.log.DEBUG: options['verbose'] = True if len(opts) > 0: extarray = option_list(opts) options['extra'] = " ".join(extarray) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_psf'] com.extend(optarray) log.debug(" ".join(com)) args = specex.parse(optarray) specex.main(args, comm=comm) elif step == 'psfcombine': outfile = graph_path_psfnight(proddir, name) infiles = [] for input in node['in']: infiles.append(graph_path_psf(proddir, input)) if rank == 0: specex.mean_psf(infiles, outfile) elif step == 'extract': pix = [] psf = [] fm = [] band = None for input in node['in']: inode = grph[input] if inode['type'] == 'psfnight': psf.append(input) elif inode['type'] == 'pix': pix.append(input) band = inode['band'] elif inode['type'] == 'fibermap': fm.append(input) if len(psf) != 1: raise RuntimeError("extraction needs exactly one psfnight file") if len(pix) != 1: raise RuntimeError("extraction needs exactly one image file") if len(fm) != 1: raise RuntimeError("extraction needs exactly one fibermap file") imgfile = graph_path_pix(rawdir, pix[0]) psffile = graph_path_psfnight(proddir, psf[0]) fmfile = graph_path_fibermap(rawdir, fm[0]) outfile = graph_path_frame(proddir, name) options = {} options['input'] = imgfile options['fibermap'] = fmfile options['psf'] = psffile options['output'] = outfile # extract the wavelength range from the options, depending on the band optscopy = copy.deepcopy(opts) wkey = "wavelength_{}".format(band) wave = optscopy[wkey] del optscopy['wavelength_b'] del optscopy['wavelength_r'] del optscopy['wavelength_z'] optscopy['wavelength'] = wave options.update(optscopy) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_extract_spectra'] com.extend(optarray) log.debug(" ".join(com)) args = extract.parse(optarray) extract.main_mpi(args, comm=comm) elif step == 'fiberflat': if len(node['in']) != 1: raise RuntimeError('fiberflat should have only one input frame') framefile = graph_path_frame(proddir, node['in'][0]) outfile = graph_path_fiberflat(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['infile'] = framefile options['qafile'] = qafile options['qafig'] = qafig options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_fiberflat'] com.extend(optarray) log.debug(" ".join(com)) args = fiberflat.parse(optarray) if rank == 0: fiberflat.main(args) elif step == 'sky': frm = [] flat = [] for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) elif inode['type'] == 'fiberflat': flat.append(input) if len(frm) != 1: raise RuntimeError("sky needs exactly one frame file") if len(flat) != 1: raise RuntimeError("sky needs exactly one fiberflat file") framefile = graph_path_frame(proddir, frm[0]) flatfile = graph_path_fiberflat(proddir, flat[0]) outfile = graph_path_sky(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['infile'] = framefile options['fiberflat'] = flatfile options['qafile'] = qafile options['qafig'] = qafig options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_sky'] com.extend(optarray) log.debug(" ".join(com)) args = skypkg.parse(optarray) if rank == 0: skypkg.main(args) elif step == 'stdstars': frm = [] flat = [] sky = [] flatexp = None specgrph = None for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) specgrph = inode['spec'] elif inode['type'] == 'fiberflat': flat.append(input) flatexp = inode['id'] elif inode['type'] == 'sky': sky.append(input) outfile = graph_path_stdstars(proddir, name) qafile, qafig = qa_path(outfile) framefiles = [graph_path_frame(proddir, x) for x in frm] skyfiles = [graph_path_sky(proddir, x) for x in sky] flatfiles = [graph_path_fiberflat(proddir, x) for x in flat] options = {} options['frames'] = framefiles options['skymodels'] = skyfiles options['fiberflats'] = flatfiles options['outfile'] = outfile options['ncpu'] = str(default_nproc) #- TODO: no QA for fitting standard stars yet options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_fit_stdstars'] com.extend(optarray) log.debug(" ".join(com)) args = stdstars.parse(optarray) if rank == 0: stdstars.main(args) elif step == 'fluxcal': frm = [] flat = [] sky = [] star = [] for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) elif inode['type'] == 'fiberflat': flat.append(input) elif inode['type'] == 'sky': sky.append(input) elif inode['type'] == 'stdstars': star.append(input) if len(frm) != 1: raise RuntimeError("fluxcal needs exactly one frame file") if len(flat) != 1: raise RuntimeError("fluxcal needs exactly one fiberflat file") if len(sky) != 1: raise RuntimeError("fluxcal needs exactly one sky file") if len(star) != 1: raise RuntimeError("fluxcal needs exactly one star file") framefile = graph_path_frame(proddir, frm[0]) flatfile = graph_path_fiberflat(proddir, flat[0]) skyfile = graph_path_sky(proddir, sky[0]) starfile = graph_path_stdstars(proddir, star[0]) outfile = graph_path_calib(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['infile'] = framefile options['fiberflat'] = flatfile options['qafile'] = qafile options['qafig'] = qafig options['sky'] = skyfile options['models'] = starfile options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_fluxcalibration'] com.extend(optarray) log.debug(" ".join(com)) args = fluxcal.parse(optarray) if rank == 0: fluxcal.main(args) elif step == 'procexp': frm = [] flat = [] sky = [] cal = [] for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) elif inode['type'] == 'fiberflat': flat.append(input) elif inode['type'] == 'sky': sky.append(input) elif inode['type'] == 'calib': cal.append(input) if len(frm) != 1: raise RuntimeError("procexp needs exactly one frame file") if len(flat) != 1: raise RuntimeError("procexp needs exactly one fiberflat file") if len(sky) != 1: raise RuntimeError("procexp needs exactly one sky file") if len(cal) != 1: raise RuntimeError("procexp needs exactly one calib file") framefile = graph_path_frame(proddir, frm[0]) flatfile = graph_path_fiberflat(proddir, flat[0]) skyfile = graph_path_sky(proddir, sky[0]) calfile = graph_path_calib(proddir, cal[0]) outfile = graph_path_cframe(proddir, name) options = {} options['infile'] = framefile options['fiberflat'] = flatfile options['sky'] = skyfile options['calib'] = calfile options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_process_exposure'] com.extend(optarray) log.debug(" ".join(com)) args = procexp.parse(optarray) if rank == 0: procexp.main(args) elif step == 'zfind': brick = node['brick'] outfile = graph_path_zbest(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['brick'] = brick options['outfile'] = outfile #- TODO: no QA for desi_zfind yet options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_zfind'] com.extend(optarray) log.debug(" ".join(com)) args = zfind.parse(optarray) zfind.main(args, comm=comm) else: raise RuntimeError("Unknown pipeline step {}".format(step)) #sys.stdout.flush() if comm is not None: #print("proc {} hit runtask barrier".format(rank)) #sys.stdout.flush() comm.barrier() #print("proc {} finish runtask".format(rank)) #sys.stdout.flush() return
def run_step(step, rawdir, proddir, grph, opts, comm=None, taskproc=1): ''' Run a whole single step of the pipeline. This function first takes the communicator and the requested processes per task and splits the communicator to form groups of processes of the desired size. It then takes the full dependency graph and extracts all the tasks for a given step. These tasks are then distributed among the groups of processes. Each process group loops over its assigned tasks. For each task, it redirects stdout/stderr to a per-task file and calls run_task(). If any process in the group throws an exception, then the traceback and all information (graph and options) needed to re-run the task are written to disk. After all process groups have finished, the state of the full graph is merged from all processes. This way a failure of one process on one task will be propagated as a failed task to all processes. Args: step (str): the pipeline step to process. rawdir (str): the path to the raw data directory. proddir (str): the path to the production directory. grph (dict): the dependency graph. opts (dict): the global options. comm (mpi4py.Comm): the full communicator to use for whole step. taskproc (int): the number of processes to use for a single task. Returns: Nothing. ''' log = get_logger() nproc = 1 rank = 0 if comm is not None: nproc = comm.size rank = comm.rank if taskproc > nproc: raise RuntimeError("cannot have {} processes per task with only {} processes".format(taskproc, nproc)) # Get the tasks that need to be done for this step. Mark all completed # tasks as done. tasks = None if rank == 0: # For this step, compute all the tasks that we need to do alltasks = [] for name, nd in sorted(list(grph.items())): if nd['type'] in step_file_types[step]: alltasks.append(name) # For each task, prune if it is finished tasks = [] for t in alltasks: if 'state' in grph[t].keys(): if grph[t]['state'] != 'done': tasks.append(t) else: tasks.append(t) if comm is not None: tasks = comm.bcast(tasks, root=0) grph = comm.bcast(grph, root=0) ntask = len(tasks) # Get the options for this step. options = opts[step] # Now every process has the full list of tasks. If we have multiple # processes for each task, split the communicator. comm_group = comm comm_rank = None group = rank ngroup = nproc group_rank = 0 if comm is not None: if taskproc > 1: ngroup = int(nproc / taskproc) group = int(rank / taskproc) group_rank = rank % taskproc comm_group = comm.Split(color=group, key=group_rank) comm_rank = comm.Split(color=group_rank, key=group) else: comm_group = None comm_rank = comm # Now we divide up the tasks among the groups of processes as # equally as possible. group_ntask = 0 group_firsttask = 0 if group < ngroup: # only assign tasks to whole groups if ntask < ngroup: if group < ntask: group_ntask = 1 group_firsttask = group else: group_ntask = 0 else: if step == 'zfind': # We load balance the bricks across process groups based # on the number of targets per brick. All bricks with # < taskproc targets are weighted the same. if ntask <= ngroup: # distribute uniform in this case group_firsttask, group_ntask = dist_uniform(ntask, ngroup, group) else: bricksizes = [ grph[x]['ntarget'] for x in tasks ] worksizes = [ taskproc if (x < taskproc) else x for x in bricksizes ] if rank == 0: log.debug("zfind {} groups".format(ngroup)) workstr = "" for w in worksizes: workstr = "{}{} ".format(workstr, w) log.debug("zfind work sizes = {}".format(workstr)) group_firsttask, group_ntask = dist_discrete(worksizes, ngroup, group) if group_rank == 0: worksum = np.sum(worksizes[group_firsttask:group_firsttask+group_ntask]) log.debug("group {} has tasks {}-{} sum = {}".format(group, group_firsttask, group_firsttask+group_ntask-1, worksum)) else: group_firsttask, group_ntask = dist_uniform(ntask, ngroup, group) # every group goes and does its tasks... faildir = os.path.join(proddir, 'run', 'failed') logdir = os.path.join(proddir, 'run', 'logs') if group_ntask > 0: for t in range(group_firsttask, group_firsttask + group_ntask): # if group_rank == 0: # print("group {} starting task {}".format(group, tasks[t])) # sys.stdout.flush() # slice out just the graph for this task (night, gname) = graph_name_split(tasks[t]) nfaildir = os.path.join(faildir, night) nlogdir = os.path.join(logdir, night) tgraph = graph_slice(grph, names=[tasks[t]], deps=True) ffile = os.path.join(nfaildir, "{}_{}.yaml".format(step, tasks[t])) # For this task, we will temporarily redirect stdout and stderr # to a task-specific log file. with stdouterr_redirected(to=os.path.join(nlogdir, "{}.log".format(gname)), comm=comm_group): try: # if the step previously failed, clear that file now if group_rank == 0: if os.path.isfile(ffile): os.remove(ffile) # if group_rank == 0: # print("group {} runtask {}".format(group, tasks[t])) # sys.stdout.flush() log.debug("running step {} task {} (group {}/{} with {} processes)".format(step, tasks[t], (group+1), ngroup, taskproc)) run_task(step, rawdir, proddir, tgraph, options, comm=comm_group) # mark step as done in our group's graph # if group_rank == 0: # print("group {} start graph_mark {}".format(group, tasks[t])) # sys.stdout.flush() graph_mark(grph, tasks[t], state='done', descend=False) # if group_rank == 0: # print("group {} end graph_mark {}".format(group, tasks[t])) # sys.stdout.flush() except: # The task threw an exception. We want to dump all information # that will be needed to re-run the run_task() function on just # this task. msg = "FAILED: step {} task {} (group {}/{} with {} processes)".format(step, tasks[t], (group+1), ngroup, taskproc) log.error(msg) exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) log.error(''.join(lines)) fyml = {} fyml['step'] = step fyml['rawdir'] = rawdir fyml['proddir'] = proddir fyml['task'] = tasks[t] fyml['graph'] = tgraph fyml['opts'] = options fyml['procs'] = taskproc if not os.path.isfile(ffile): log.error('Dumping yaml graph to '+ffile) # we are the first process to hit this with open(ffile, 'w') as f: yaml.dump(fyml, f, default_flow_style=False) # mark the step as failed in our group's local graph graph_mark(grph, tasks[t], state='fail', descend=True) if comm_group is not None: comm_group.barrier() # Now we take the graphs from all groups and merge their states #sys.stdout.flush() if comm is not None: # print("proc {} hit merge barrier".format(rank)) # sys.stdout.flush() # comm.barrier() if group_rank == 0: # print("proc {} joining merge".format(rank)) # sys.stdout.flush() graph_merge_state(grph, comm=comm_rank) if comm_group is not None: # print("proc {} joining bcast".format(rank)) # sys.stdout.flush() grph = comm_group.bcast(grph, root=0) return grph
def run_step(step, rawdir, proddir, grph, opts, comm=None, taskproc=1): log = get_logger() nproc = 1 rank = 0 if comm is not None: nproc = comm.size rank = comm.rank if taskproc > nproc: raise RuntimeError("cannot have {} processes per task with only {} processes".format(taskproc, nproc)) # Get the tasks that need to be done for this step. Mark all completed # tasks as done. tasks = None if rank == 0: # For this step, compute all the tasks that we need to do alltasks = [] for name, nd in sorted(list(grph.items())): if nd['type'] in step_file_types[step]: alltasks.append(name) # For each task, prune if it is finished tasks = [] for t in alltasks: if 'state' in grph[t].keys(): if grph[t]['state'] != 'done': tasks.append(t) else: tasks.append(t) if comm is not None: tasks = comm.bcast(tasks, root=0) grph = comm.bcast(grph, root=0) ntask = len(tasks) # Get the options for this step. options = opts[step] # Now every process has the full list of tasks. If we have multiple # processes for each task, split the communicator. comm_group = comm comm_rank = None group = rank ngroup = nproc group_rank = 0 if comm is not None: if taskproc > 1: ngroup = int(nproc / taskproc) group = int(rank / taskproc) group_rank = rank % taskproc comm_group = comm.Split(color=group, key=group_rank) comm_rank = comm.Split(color=group_rank, key=group) else: comm_group = None comm_rank = comm # Now we divide up the tasks among the groups of processes as # equally as possible. group_ntask = 0 group_firsttask = 0 if group < ngroup: # only assign tasks to whole groups if ntask < ngroup: if group < ntask: group_ntask = 1 group_firsttask = group else: group_ntask = 0 else: if step == 'zfind': # We load balance the bricks across process groups based # on the number of targets per brick. All bricks with # < taskproc targets are weighted the same. if ntask <= ngroup: # distribute uniform in this case group_firsttask, group_ntask = dist_uniform(ntask, ngroup, group) else: bricksizes = [ grph[x]['ntarget'] for x in tasks ] worksizes = [ taskproc if (x < taskproc) else x for x in bricksizes ] if rank == 0: log.debug("zfind {} groups".format(ngroup)) workstr = "" for w in worksizes: workstr = "{}{} ".format(workstr, w) log.debug("zfind work sizes = {}".format(workstr)) group_firsttask, group_ntask = dist_discrete(worksizes, ngroup, group) if group_rank == 0: worksum = np.sum(worksizes[group_firsttask:group_firsttask+group_ntask]) log.debug("group {} has tasks {}-{} sum = {}".format(group, group_firsttask, group_firsttask+group_ntask-1, worksum)) else: group_firsttask, group_ntask = dist_uniform(ntask, ngroup, group) # every group goes and does its tasks... faildir = os.path.join(proddir, 'run', 'failed') logdir = os.path.join(proddir, 'run', 'logs') if group_ntask > 0: for t in range(group_firsttask, group_firsttask + group_ntask): # if group_rank == 0: # print("group {} starting task {}".format(group, tasks[t])) # sys.stdout.flush() # slice out just the graph for this task (night, gname) = graph_name_split(tasks[t]) nfaildir = os.path.join(faildir, night) nlogdir = os.path.join(logdir, night) tgraph = graph_slice(grph, names=[tasks[t]], deps=True) ffile = os.path.join(nfaildir, "{}_{}.yaml".format(step, tasks[t])) # For this task, we will temporarily redirect stdout and stderr # to a task-specific log file. with stdouterr_redirected(to=os.path.join(nlogdir, "{}.log".format(gname)), comm=comm_group): try: # if the step previously failed, clear that file now if group_rank == 0: if os.path.isfile(ffile): os.remove(ffile) # if group_rank == 0: # print("group {} runtask {}".format(group, tasks[t])) # sys.stdout.flush() log.debug("running step {} task {} (group {}/{} with {} processes)".format(step, tasks[t], (group+1), ngroup, taskproc)) run_task(step, rawdir, proddir, tgraph, options, comm=comm_group) # mark step as done in our group's graph # if group_rank == 0: # print("group {} start graph_mark {}".format(group, tasks[t])) # sys.stdout.flush() graph_mark(grph, tasks[t], state='done', descend=False) # if group_rank == 0: # print("group {} end graph_mark {}".format(group, tasks[t])) # sys.stdout.flush() except: # The task threw an exception. We want to dump all information # that will be needed to re-run the run_task() function on just # this task. msg = "FAILED: step {} task {} (group {}/{} with {} processes)".format(step, tasks[t], (group+1), ngroup, taskproc) log.error(msg) exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) log.error(''.join(lines)) fyml = {} fyml['step'] = step fyml['rawdir'] = rawdir fyml['proddir'] = proddir fyml['task'] = tasks[t] fyml['graph'] = tgraph fyml['opts'] = options fyml['procs'] = taskproc if not os.path.isfile(ffile): log.error('Dumping yaml graph to '+ffile) # we are the first process to hit this with open(ffile, 'w') as f: yaml.dump(fyml, f, default_flow_style=False) # mark the step as failed in our group's local graph graph_mark(grph, tasks[t], state='fail', descend=True) if comm_group is not None: comm_group.barrier() # Now we take the graphs from all groups and merge their states #sys.stdout.flush() if comm is not None: # print("proc {} hit merge barrier".format(rank)) # sys.stdout.flush() # comm.barrier() if group_rank == 0: # print("proc {} joining merge".format(rank)) # sys.stdout.flush() graph_merge_state(grph, comm=comm_rank) if comm_group is not None: # print("proc {} joining bcast".format(rank)) # sys.stdout.flush() grph = comm_group.bcast(grph, root=0) return grph
def run_task(step, rawdir, proddir, grph, opts, comm=None): if step not in step_file_types.keys(): raise ValueError("step type {} not recognized".format(step)) log = get_logger() # Verify that there is only a single node in the graph # of the desired step. The graph should already have # been sliced before calling this task. nds = [] for name, nd in grph.items(): if nd['type'] in step_file_types[step]: nds.append(name) if len(nds) != 1: raise RuntimeError("run_task should only be called with a graph containing a single node to process") name = nds[0] node = grph[name] nproc = 1 rank = 0 if comm is not None: nproc = comm.size rank = comm.rank # step-specific operations if step == 'bootcalib': # The inputs to this step include *all* the arcs and flats for the # night. Here we sort them into the list of arcs and the list of # flats, and simply choose the first one of each. arcs = [] flats = [] for input in node['in']: inode = grph[input] if inode['flavor'] == 'arc': arcs.append(input) elif inode['flavor'] == 'flat': flats.append(input) if len(arcs) == 0: raise RuntimeError("no arc images found!") if len(flats) == 0: raise RuntimeError("no flat images found!") firstarc = sorted(arcs)[0] firstflat = sorted(flats)[0] # build list of options arcpath = graph_path_pix(rawdir, firstarc) flatpath = graph_path_pix(rawdir, firstflat) outpath = graph_path_psfboot(proddir, name) qafile, qafig = qa_path(outpath) options = {} options['fiberflat'] = flatpath options['arcfile'] = arcpath options['qafile'] = qafile options['qafig'] = qafig options['outfile'] = outpath options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_bootcalib'] com.extend(optarray) log.debug(" ".join(com)) args = bootcalib.parse(optarray) sys.stdout.flush() if rank == 0: #print("proc {} call bootcalib main".format(rank)) #sys.stdout.flush() bootcalib.main(args) #print("proc {} returned from bootcalib main".format(rank)) #sys.stdout.flush() #print("proc {} finish runtask bootcalib".format(rank)) #sys.stdout.flush() elif step == 'specex': # get input files pix = [] boot = [] for input in node['in']: inode = grph[input] if inode['type'] == 'psfboot': boot.append(input) elif inode['type'] == 'pix': pix.append(input) if len(boot) != 1: raise RuntimeError("specex needs exactly one psfboot file") if len(pix) == 0: raise RuntimeError("specex needs exactly one image file") bootfile = graph_path_psfboot(proddir, boot[0]) imgfile = graph_path_pix(rawdir, pix[0]) outfile = graph_path_psf(proddir, name) outdir = os.path.dirname(outfile) options = {} options['input'] = imgfile options['bootfile'] = bootfile options['output'] = outfile if log.getEffectiveLevel() == desispec.log.DEBUG: options['verbose'] = True if len(opts) > 0: extarray = option_list(opts) options['extra'] = " ".join(extarray) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_psf'] com.extend(optarray) log.debug(" ".join(com)) args = specex.parse(optarray) specex.main(args, comm=comm) elif step == 'psfcombine': outfile = graph_path_psfnight(proddir, name) infiles = [] for input in node['in']: infiles.append(graph_path_psf(proddir, input)) if rank == 0: specex.mean_psf(infiles, outfile) elif step == 'extract': pix = [] psf = [] fm = [] band = None for input in node['in']: inode = grph[input] if inode['type'] == 'psfnight': psf.append(input) elif inode['type'] == 'pix': pix.append(input) band = inode['band'] elif inode['type'] == 'fibermap': fm.append(input) if len(psf) != 1: raise RuntimeError("extraction needs exactly one psfnight file") if len(pix) != 1: raise RuntimeError("extraction needs exactly one image file") if len(fm) != 1: raise RuntimeError("extraction needs exactly one fibermap file") imgfile = graph_path_pix(rawdir, pix[0]) psffile = graph_path_psfnight(proddir, psf[0]) fmfile = graph_path_fibermap(rawdir, fm[0]) outfile = graph_path_frame(proddir, name) options = {} options['input'] = imgfile options['fibermap'] = fmfile options['psf'] = psffile options['output'] = outfile # extract the wavelength range from the options, depending on the band optscopy = copy.deepcopy(opts) wkey = "wavelength_{}".format(band) wave = optscopy[wkey] del optscopy['wavelength_b'] del optscopy['wavelength_r'] del optscopy['wavelength_z'] optscopy['wavelength'] = wave options.update(optscopy) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_extract_spectra'] com.extend(optarray) log.debug(" ".join(com)) args = extract.parse(optarray) extract.main_mpi(args, comm=comm) elif step == 'fiberflat': if len(node['in']) != 1: raise RuntimeError('fiberflat should have only one input frame') framefile = graph_path_frame(proddir, node['in'][0]) outfile = graph_path_fiberflat(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['infile'] = framefile options['qafile'] = qafile options['qafig'] = qafig options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_fiberflat'] com.extend(optarray) log.debug(" ".join(com)) args = fiberflat.parse(optarray) if rank == 0: fiberflat.main(args) elif step == 'sky': frm = [] flat = [] for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) elif inode['type'] == 'fiberflat': flat.append(input) if len(frm) != 1: raise RuntimeError("sky needs exactly one frame file") if len(flat) != 1: raise RuntimeError("sky needs exactly one fiberflat file") framefile = graph_path_frame(proddir, frm[0]) flatfile = graph_path_fiberflat(proddir, flat[0]) outfile = graph_path_sky(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['infile'] = framefile options['fiberflat'] = flatfile options['qafile'] = qafile options['qafig'] = qafig options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_sky'] com.extend(optarray) log.debug(" ".join(com)) args = skypkg.parse(optarray) if rank == 0: skypkg.main(args) elif step == 'stdstars': frm = [] flat = [] sky = [] flatexp = None specgrph = None for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) specgrph = inode['spec'] elif inode['type'] == 'fiberflat': flat.append(input) flatexp = inode['id'] elif inode['type'] == 'sky': sky.append(input) outfile = graph_path_stdstars(proddir, name) qafile, qafig = qa_path(outfile) framefiles = [graph_path_frame(proddir, x) for x in frm] skyfiles = [graph_path_sky(proddir, x) for x in sky] flatfiles = [graph_path_fiberflat(proddir, x) for x in flat] options = {} options['frames'] = framefiles options['skymodels'] = skyfiles options['fiberflats'] = flatfiles options['outfile'] = outfile options['ncpu'] = str(default_nproc) #- TODO: no QA for fitting standard stars yet options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_fit_stdstars'] com.extend(optarray) log.debug(" ".join(com)) args = stdstars.parse(optarray) if rank == 0: stdstars.main(args) elif step == 'fluxcal': frm = [] flat = [] sky = [] star = [] for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) elif inode['type'] == 'fiberflat': flat.append(input) elif inode['type'] == 'sky': sky.append(input) elif inode['type'] == 'stdstars': star.append(input) if len(frm) != 1: raise RuntimeError("fluxcal needs exactly one frame file") if len(flat) != 1: raise RuntimeError("fluxcal needs exactly one fiberflat file") if len(sky) != 1: raise RuntimeError("fluxcal needs exactly one sky file") if len(star) != 1: raise RuntimeError("fluxcal needs exactly one star file") framefile = graph_path_frame(proddir, frm[0]) flatfile = graph_path_fiberflat(proddir, flat[0]) skyfile = graph_path_sky(proddir, sky[0]) starfile = graph_path_stdstars(proddir, star[0]) outfile = graph_path_calib(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['infile'] = framefile options['fiberflat'] = flatfile options['qafile'] = qafile options['qafig'] = qafig options['sky'] = skyfile options['models'] = starfile options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_compute_fluxcalibration'] com.extend(optarray) log.debug(" ".join(com)) args = fluxcal.parse(optarray) if rank == 0: fluxcal.main(args) elif step == 'procexp': frm = [] flat = [] sky = [] cal = [] for input in node['in']: inode = grph[input] if inode['type'] == 'frame': frm.append(input) elif inode['type'] == 'fiberflat': flat.append(input) elif inode['type'] == 'sky': sky.append(input) elif inode['type'] == 'calib': cal.append(input) if len(frm) != 1: raise RuntimeError("procexp needs exactly one frame file") if len(flat) != 1: raise RuntimeError("procexp needs exactly one fiberflat file") if len(sky) != 1: raise RuntimeError("procexp needs exactly one sky file") if len(cal) != 1: raise RuntimeError("procexp needs exactly one calib file") framefile = graph_path_frame(proddir, frm[0]) flatfile = graph_path_fiberflat(proddir, flat[0]) skyfile = graph_path_sky(proddir, sky[0]) calfile = graph_path_calib(proddir, cal[0]) outfile = graph_path_cframe(proddir, name) options = {} options['infile'] = framefile options['fiberflat'] = flatfile options['sky'] = skyfile options['calib'] = calfile options['outfile'] = outfile options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_process_exposure'] com.extend(optarray) log.debug(" ".join(com)) args = procexp.parse(optarray) if rank == 0: procexp.main(args) elif step == 'zfind': brick = node['brick'] outfile = graph_path_zbest(proddir, name) qafile, qafig = qa_path(outfile) options = {} options['brick'] = brick options['outfile'] = outfile #- TODO: no QA for desi_zfind yet options.update(opts) optarray = option_list(options) # at debug level, write out the equivalent commandline com = ['RUN', 'desi_zfind'] com.extend(optarray) log.debug(" ".join(com)) args = zfind.parse(optarray) zfind.main(args, comm=comm) else: raise RuntimeError("Unknown pipeline step {}".format(step)) #sys.stdout.flush() if comm is not None: #print("proc {} hit runtask barrier".format(rank)) #sys.stdout.flush() comm.barrier() #print("proc {} finish runtask".format(rank)) #sys.stdout.flush() return
def retry_task(failpath, newopts=None): ''' Attempt to re-run a failed task. This takes the path to a yaml file containing the information about a failed task (such a file is written by run_step() when a task fails). This yaml file contains the truncated dependecy graph for the single task, as well as the options that were used when running the task. It also contains information about the number of processes that were being used. This function attempts to load mpi4py and use the MPI.COMM_WORLD communicator to re-run the task. If COMM_WORLD has a different number of processes than were originally used, a warning is printed. A warning is also printed if the options are being overridden. If the task completes successfully, the failed yaml file is deleted. Args: failpath (str): the path to the failure yaml file. newopts (dict): the dictionary of options to use in place of the original ones. Returns: Nothing. ''' log = get_logger() if not os.path.isfile(failpath): raise RuntimeError( "failure yaml file {} does not exist".format(failpath)) fyml = None with open(failpath, 'r') as f: fyml = yaml.load(f) step = fyml['step'] rawdir = fyml['rawdir'] proddir = fyml['proddir'] name = fyml['task'] grph = fyml['graph'] origopts = fyml['opts'] nproc = fyml['procs'] comm = None rank = 0 nworld = 1 if nproc > 1: from mpi4py import MPI comm = MPI.COMM_WORLD nworld = comm.size rank = comm.rank if nworld != nproc: if rank == 0: log.warning( "WARNING: original task was run with {} processes, re-running with {} instead" .format(nproc, nworld)) opts = origopts if newopts is not None: log.warning("WARNING: overriding original options") opts = newopts logdir = os.path.join(proddir, 'run', 'logs') (night, gname) = graph_name_split(name) nlogdir = os.path.join(logdir, night) # For this task, we will temporarily redirect stdout and stderr # to a task-specific log file. tasklog = os.path.join(nlogdir, "{}.log".format(gname)) if rank == 0: if os.path.isfile(tasklog): os.remove(tasklog) if comm is not None: comm.barrier() failcount = 0 with stdouterr_redirected(to=tasklog, comm=comm): try: log.debug("re-trying step {}, task {} with {} processes".format( step, name, nworld)) run_task(step, rawdir, proddir, grph, opts, comm=comm) except: failcount += 1 msg = "FAILED: step {} task {} process {}".format(step, name, rank) log.error(msg) exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) log.error(''.join(lines)) if comm is not None: comm.barrier() failcount = comm.allreduce(failcount) if rank == 0: if failcount > 0: log.error("{} of {} processes raised an exception".format( failcount, nworld)) else: # success, clear failure file now if os.path.isfile(failpath): os.remove(failpath) return
def run_step(step, rawdir, proddir, grph, opts, comm=None, taskproc=1): ''' Run a whole single step of the pipeline. This function first takes the communicator and the requested processes per task and splits the communicator to form groups of processes of the desired size. It then takes the full dependency graph and extracts all the tasks for a given step. These tasks are then distributed among the groups of processes. Each process group loops over its assigned tasks. For each task, it redirects stdout/stderr to a per-task file and calls run_task(). If any process in the group throws an exception, then the traceback and all information (graph and options) needed to re-run the task are written to disk. After all process groups have finished, the state of the full graph is merged from all processes. This way a failure of one process on one task will be propagated as a failed task to all processes. Args: step (str): the pipeline step to process. rawdir (str): the path to the raw data directory. proddir (str): the path to the production directory. grph (dict): the dependency graph. opts (dict): the global options. comm (mpi4py.Comm): the full communicator to use for whole step. taskproc (int): the number of processes to use for a single task. Returns: Nothing. ''' log = get_logger() nproc = 1 rank = 0 if comm is not None: nproc = comm.size rank = comm.rank if taskproc > nproc: raise RuntimeError( "cannot have {} processes per task with only {} processes".format( taskproc, nproc)) # Get the tasks that need to be done for this step. Mark all completed # tasks as done. tasks = None if rank == 0: # For this step, compute all the tasks that we need to do alltasks = [] for name, nd in sorted(grph.items()): if nd['type'] in step_file_types[step]: alltasks.append(name) # For each task, prune if it is finished tasks = [] for t in alltasks: if 'state' in grph[t]: if grph[t]['state'] != 'done': tasks.append(t) else: tasks.append(t) if comm is not None: tasks = comm.bcast(tasks, root=0) grph = comm.bcast(grph, root=0) ntask = len(tasks) # Get the options for this step. options = opts[step] # Now every process has the full list of tasks. If we have multiple # processes for each task, split the communicator. comm_group = comm comm_rank = None group = rank ngroup = nproc group_rank = 0 if comm is not None: if taskproc > 1: ngroup = int(nproc / taskproc) group = int(rank / taskproc) group_rank = rank % taskproc comm_group = comm.Split(color=group, key=group_rank) comm_rank = comm.Split(color=group_rank, key=group) else: comm_group = None comm_rank = comm # Now we divide up the tasks among the groups of processes as # equally as possible. group_ntask = 0 group_firsttask = 0 if group < ngroup: # only assign tasks to whole groups if ntask < ngroup: if group < ntask: group_ntask = 1 group_firsttask = group else: group_ntask = 0 else: if step == 'zfind': # We load balance the bricks across process groups based # on the number of targets per brick. All bricks with # < taskproc targets are weighted the same. if ntask <= ngroup: # distribute uniform in this case group_firsttask, group_ntask = dist_uniform( ntask, ngroup, group) else: bricksizes = [grph[x]['ntarget'] for x in tasks] worksizes = [ taskproc if (x < taskproc) else x for x in bricksizes ] if rank == 0: log.debug("zfind {} groups".format(ngroup)) workstr = "" for w in worksizes: workstr = "{}{} ".format(workstr, w) log.debug("zfind work sizes = {}".format(workstr)) group_firsttask, group_ntask = dist_discrete( worksizes, ngroup, group) if group_rank == 0: worksum = np.sum( worksizes[group_firsttask:group_firsttask + group_ntask]) log.debug("group {} has tasks {}-{} sum = {}".format( group, group_firsttask, group_firsttask + group_ntask - 1, worksum)) else: group_firsttask, group_ntask = dist_uniform( ntask, ngroup, group) # every group goes and does its tasks... faildir = os.path.join(proddir, 'run', 'failed') logdir = os.path.join(proddir, 'run', 'logs') failcount = 0 group_failcount = 0 if group_ntask > 0: for t in range(group_firsttask, group_firsttask + group_ntask): # if group_rank == 0: # print("group {} starting task {}".format(group, tasks[t])) # sys.stdout.flush() # slice out just the graph for this task (night, gname) = graph_name_split(tasks[t]) # check if all inputs exist missing = 0 if group_rank == 0: for iname in grph[tasks[t]]['in']: ind = grph[iname] fspath = graph_path(rawdir, proddir, iname, ind['type']) if not os.path.exists(fspath): missing += 1 log.error( "skipping step {} task {} due to missing input {}". format(step, tasks[t], fspath)) if comm_group is not None: missing = comm_group.bcast(missing, root=0) if missing > 0: if group_rank == 0: group_failcount += 1 continue nfaildir = os.path.join(faildir, night) nlogdir = os.path.join(logdir, night) tgraph = graph_slice(grph, names=[tasks[t]], deps=True) ffile = os.path.join(nfaildir, "{}_{}.yaml".format(step, tasks[t])) # For this task, we will temporarily redirect stdout and stderr # to a task-specific log file. tasklog = os.path.join(nlogdir, "{}.log".format(gname)) if group_rank == 0: if os.path.isfile(tasklog): os.remove(tasklog) if comm_group is not None: comm_group.barrier() with stdouterr_redirected(to=tasklog, comm=comm_group): try: # if the step previously failed, clear that file now if group_rank == 0: if os.path.isfile(ffile): os.remove(ffile) log.debug( "running step {} task {} (group {}/{} with {} processes)" .format(step, tasks[t], (group + 1), ngroup, taskproc)) # All processes in comm_group will either return from this or ALL will # raise an exception run_task(step, rawdir, proddir, tgraph, options, comm=comm_group) # mark step as done in our group's graph graph_mark(grph, tasks[t], state='done', descend=False) except: # The task threw an exception. We want to dump all information # that will be needed to re-run the run_task() function on just # this task. if group_rank == 0: group_failcount += 1 msg = "FAILED: step {} task {} (group {}/{} with {} processes)".format( step, tasks[t], (group + 1), ngroup, taskproc) log.error(msg) exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception( exc_type, exc_value, exc_traceback) log.error(''.join(lines)) fyml = {} fyml['step'] = step fyml['rawdir'] = rawdir fyml['proddir'] = proddir fyml['task'] = tasks[t] fyml['graph'] = tgraph fyml['opts'] = options fyml['procs'] = taskproc if not os.path.isfile(ffile): log.error('Dumping yaml graph to ' + ffile) # we are the first process to hit this with open(ffile, 'w') as f: yaml.dump(fyml, f, default_flow_style=False) # mark the step as failed in our group's local graph graph_mark(grph, tasks[t], state='fail', descend=True) if comm_group is not None: group_failcount = comm_group.bcast(group_failcount, root=0) # Now we take the graphs from all groups and merge their states failcount = group_failcount if comm is not None: if group_rank == 0: graph_merge_state(grph, comm=comm_rank) failcount = comm_rank.allreduce(failcount) if comm_group is not None: grph = comm_group.bcast(grph, root=0) failcount = comm_group.bcast(failcount, root=0) return grph, ntask, failcount
def stdouterr_redirected(to=os.devnull, comm=None): ''' Based on http://stackoverflow.com/questions/5081657 import os with stdouterr_redirected(to=filename): print("from Python") os.system("echo non-Python applications are also supported") ''' sys.stdout.flush() sys.stderr.flush() fd = sys.stdout.fileno() fde = sys.stderr.fileno() ##### assert that Python and C stdio write using the same file descriptor ####assert libc.fileno(ctypes.c_void_p.in_dll(libc, "stdout")) == fd == 1 def _redirect_stdout(to): sys.stdout.close() # + implicit flush() os.dup2(to.fileno(), fd) # fd writes to 'to' file sys.stdout = os.fdopen(fd, 'w') # Python writes to fd sys.stderr.close() # + implicit flush() os.dup2(to.fileno(), fde) # fd writes to 'to' file sys.stderr = os.fdopen(fde, 'w') # Python writes to fd # update desi logging to use new stdout log = get_logger() while len(log.handlers) > 0: h = log.handlers[0] log.removeHandler(h) # Add the current stdout. ch = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( '%(levelname)s:%(filename)s:%(lineno)s:%(funcName)s: %(message)s') ch.setFormatter(formatter) log.addHandler(ch) with os.fdopen(os.dup(fd), 'w') as old_stdout: if (comm is None) or (comm.rank == 0): log.debug("Begin log redirection to {} at {}".format( to, time.asctime())) sys.stdout.flush() sys.stderr.flush() pto = to if comm is None: with open(pto, 'w') as file: _redirect_stdout(to=file) else: pto = "{}_{}".format(to, comm.rank) with open(pto, 'w') as file: _redirect_stdout(to=file) try: yield # allow code to be run with the redirected stdout finally: sys.stdout.flush() sys.stderr.flush() _redirect_stdout(to=old_stdout) # restore stdout. # buffering and flags such as # CLOEXEC may be different if comm is not None: # concatenate per-process files comm.barrier() if comm.rank == 0: with open(to, 'w') as outfile: for p in range(comm.size): outfile.write( "================= Process {} =================\n" .format(p)) fname = "{}_{}".format(to, p) with open(fname) as infile: outfile.write(infile.read()) os.remove(fname) comm.barrier() if (comm is None) or (comm.rank == 0): log.debug("End log redirection to {} at {}".format( to, time.asctime())) sys.stdout.flush() sys.stderr.flush() return