def write_gfas(filename, data, indir=None, nside=None, survey="?", gaiaepoch=None): """Write a catalogue of Guide/Focus/Alignment targets. Parameters ---------- filename : :class:`str` Output file name. data : :class:`~numpy.ndarray` Array of GFAs to write to file. indir : :class:`str`, optional, defaults to None. Name of input Legacy Survey Data Release directory, write to header of output file if passed (and if not None). nside: :class:`int`, defaults to None. If passed, add a column to the GFAs array popluated with HEALPixels at resolution `nside`. survey : :class:`str`, optional, defaults to "?" Written to output file header as the keyword `SURVEY`. gaiaepoch: :class:`float`, defaults to None Gaia proper motion reference epoch. If not None, write to header of output file. If None, default to an epoch of 2015.5. """ # ADM rename 'TYPE' to 'MORPHTYPE'. data = rfn.rename_fields(data, {'TYPE': 'MORPHTYPE'}) # ADM create header to include versions, etc. hdr = fitsio.FITSHDR() depend.setdep(hdr, 'desitarget', desitarget_version) depend.setdep(hdr, 'desitarget-git', gitversion()) if indir is not None: depend.setdep(hdr, 'input-data-release', indir) # ADM note that if 'dr' is not in the indir DR # ADM directory structure, garbage will # ADM be rewritten gracefully in the header. drstring = 'dr'+indir.split('dr')[-1][0] depend.setdep(hdr, 'photcat', drstring) # ADM add HEALPix column, if requested by input. if nside is not None: theta, phi = np.radians(90-data["DEC"]), np.radians(data["RA"]) hppix = hp.ang2pix(nside, theta, phi, nest=True) data = rfn.append_fields(data, 'HPXPIXEL', hppix, usemask=False) hdr['HPXNSIDE'] = nside hdr['HPXNEST'] = True # ADM add the type of survey (main, or commissioning "cmx") to the header. hdr["SURVEY"] = survey # ADM add the Gaia reference epoch, or pass 2015.5 if not included. hdr['REFEPOCH'] = {'name': 'REFEPOCH', 'value': 2015.5, 'comment': "Gaia Proper Motion Reference Epoch"} if gaiaepoch is not None: hdr['REFEPOCH'] = gaiaepoch fitsio.write(filename, data, extname='GFA_TARGETS', header=hdr, clobber=True)
def pixweight(nside, tiles=None, radius=None, precision=0.01, outfile=None, outplot=None): ''' Create an array of the fraction of each pixel that overlaps the passed tiles Optional Args: nside: integer healpix nside, 2**k where 0 < k < 30 tiles: Table-like with RA,DEC columns; or None to use all DESI tiles from desimodel.io.load_tiles() radius: tile radius in degrees; if None use desimodel.focalplane.get_tile_radius_deg() precision: approximate precision at which to calculate the area of pixels that partially overlap the footprint in SQUARE DEGREES (e.g. 0.01 means precise to 0.01 sq. deg., or 36 sq. arcmin.) lower numbers mean better precision outfile: if not None, then write the pixel->weight array to the file passed as outfile (could be full directory path + file) outplot: if a string is passed, create a plot named that string (pass a *name* for a plot in the current directory, a *full path* for a plot in a different directory). This is passed to matplotlib.pyplot's savefig routine Returns pixweight: an array of the weight for each pixel at the passed nside. The weight is the fracion of the pixel that overlaps the passed tiles: `WEIGHT=1` for the pixel is entirely contained in the tiles `WEIGHT=0` for the pixel is entirely outside of the tiles `0 < WEIGHT < 1` for a pixel that overlaps the tiles The index of the array is the HEALPixel integer Notes: it's sufficient to create the weights at a suitably high nside, say nside=256 (0.052456 sq. deg. per pixel) as pixel numbers at lower nsides can be obtained by integer division by powers of 4, e.g. pix_@_nside_128 = pix@nside_256//4 and fractional weights at lower nsides are the mean of the 4 pixels at the higher nside desimodel.io.load_pixweight() can downsample the array to lower nsides ''' t0 = time() #ADM create an array that is zero for each integer pixel at this nside import healpy as hp npix = hp.nside2npix(nside) weight = np.zeros(npix, float) #ADM recover pixels that are likely to be in the DESI footprint and #ADM set their weight to one (it's the case, then, that anything that #ADM is *definitely outside of* the footprint has a weight of zero) import desimodel.footprint pix = desimodel.footprint.tiles2pix(nside, tiles=tiles, radius=radius, fact=2**8) weight[pix] = 1. #ADM loop through to find the "edge" (fractional) pixels, until convergence log.info('Start integration around partial pixels...') setfracpix = set([-1]) #ADM only have a limited range, to prevent this running forever for i in range(20): log.info( 'Trying {} pixel boundary points (step={})...t={:.1f}s'.format( 4 * 2**i, 2**i, time() - t0)) #ADM find the fractional pixels at this step fracpix = desimodel.footprint.tiles2fracpix(nside, step=2**i, tiles=tiles, radius=radius, fact=2**8) log.info('...found {} fractional pixels...t={:.1f}s'.format( len(fracpix), time() - t0)) if set(fracpix) == setfracpix: break #ADM if we didn't converge, loop through again with the new #ADM set of fractional pixels setfracpix = set(fracpix) #ADM warn the user if the integration didn't converge at 4*2**20 boundary points if i == 20: log.warning('Integration around pixel boundaries did NOT converge!') #ADM create a mask that is True for fractional pixels, false for all other pixels mask = np.zeros(npix, bool) mask[fracpix] = True #ADM find the minimum and maximum dec of interest (there's no need to Monte Carlo #ADM integrate over declinations that lie beyond the fractional pixels) xyzverts = hp.boundaries(nside, fracpix, nest=True) theta, phi = hp.vec2ang(np.hstack(xyzverts).T) ra, dec = np.degrees(phi), 90 - np.degrees(theta) decmin, decmax = np.min(dec), np.max(dec) sindecmin, sindecmax = np.sin(np.radians(decmin)), np.sin( np.radians(decmax)) area = 360. * np.degrees(sindecmax - sindecmin) log.info( 'Populating randoms between {:.2f} and {:.2f} degrees, an area of {:.1f} sq. deg....t={:.1f}s' .format(decmin, decmax, area, time() - t0)) #ADM determine the required precision for the area of interest nptpersqdeg = int((1. / precision)**2) npt = int(nptpersqdeg * area) log.info('Generating {} random points...t={:.1f}s'.format( npt, time() - t0)) #ADM loop over chunks (if npt > 1e7) to reach npt points while avoiding memory issues nchunk = int(1e7) pixinmask = [] rainmask = [] decinmask = [] cnt = 0 while cnt < npt: #ADM if a chunk would pass too many points (> npt), revert to the remaining number #ADM of points instead of creating a full chunk if nchunk + cnt > npt: nchunk = npt - cnt #ADM populate the portion of the sphere of interest with random points ra = np.random.uniform(0., 360., nchunk) dec = np.degrees( np.arcsin(1. - np.random.uniform(1 - sindecmax, 1 - sindecmin, nchunk))) #ADM convert the random points to pixel number pix = desimodel.footprint.radec2pix(nside, ra, dec) #ADM retain random points for which the mask is True (i.e. just the fractional pixels) inmask = np.where(mask[pix])[0] decinmask.append(dec[inmask]) rainmask.append(ra[inmask]) pixinmask.append(pix[inmask]) cnt += nchunk log.info('...generated {} random points...t={:.1f}s'.format( cnt, time() - t0)) #ADM collapse the 2-D chunks into a 1-D array from itertools import chain rainmask = np.array(list(chain.from_iterable(rainmask))) decinmask = np.array(list(chain.from_iterable(decinmask))) pixinmask = np.array(list(chain.from_iterable(pixinmask))) log.info( '{} of the random points are in fractional pixels...t={:.1f}s'.format( len(pixinmask), time() - t0)) #ADM find which random points in the fractional pixels are in the DESI footprint log.info( 'Start integration over fractional pixels at edges of DESI footprint...' ) indesi = desimodel.footprint.is_point_in_desi(desimodel.io.load_tiles(), rainmask, decinmask) log.info( '...{} of the random points in fractional pixels are in DESI...t={:.1f}s' .format(np.sum(indesi), time() - t0)) #ADM assign the weights of the fractional pixels as the fraction of random points #ADM in the fractional pixels that are in the DESI footprint allinfracpix = np.histogram(pixinmask, bins=np.arange(npix))[0][fracpix] desiinfracpix = np.histogram(pixinmask[np.where(indesi)], bins=np.arange(npix))[0][fracpix] #ADM guard against integer division (for backwards-compatability with Python2) #ADM and create the final array of weights weight[fracpix] = desiinfracpix.astype('float64') / allinfracpix if outfile is not None: #ADM get path to DESIMODEL footprint directory, create output file name import desimodel.io #ADM write information indicating HEALPix setup to file header #ADM include desimodel version as a check in case footprint changes import fitsio from desiutil import depend hdr = fitsio.FITSHDR() depend.setdep(hdr, 'desimodel', desimodel_version) hdr['PRECISE'] = precision hdr['HPXNSIDE'] = nside hdr['HPXNEST'] = True fitsio.write(outfile, weight, extname='PIXWEIGHTS', header=hdr, clobber=True) #ADM if outplot was passed, make a plot of the final mask in Mollweide projection if outplot is not None: import matplotlib.pyplot as plt hp.mollview(weight, nest=True) plt.savefig(outplot) log.info('Done...t={:.1f}s'.format(time() - t0)) return weight
def write_targets(filename, data, indir=None, qso_selection=None, sandboxcuts=False, nside=None): """Write a target catalogue. Parameters ---------- filename : output target selection file data : numpy structured array of targets to save nside: :class:`int` If passed, add a column to the targets array popluated with HEALPix pixels at resolution nside """ # FIXME: assert data and tsbits schema #ADM use RELEASE to determine the release string for the input targets if len(data) == 0: #ADM if there are no targets, then we don't know the Data Release drstring = 'unknowndr' else: drint = np.max(data['RELEASE']//1000) drstring = 'dr'+str(drint) #- Create header to include versions, etc. hdr = fitsio.FITSHDR() depend.setdep(hdr, 'desitarget', desitarget_version) depend.setdep(hdr, 'desitarget-git', gitversion()) depend.setdep(hdr, 'sandboxcuts', sandboxcuts) depend.setdep(hdr, 'photcat', drstring) if indir is not None: depend.setdep(hdr, 'tractor-files', indir) if qso_selection is None: print('WARNING: qso_selection method not specified for output file') depend.setdep(hdr, 'qso-selection', 'unknown') else: depend.setdep(hdr, 'qso-selection', qso_selection) #ADM add HEALPix column, if requested by input if nside is not None: theta, phi = np.radians(90-data["DEC"]), np.radians(data["RA"]) hppix = hp.ang2pix(nside, theta, phi, nest=True) data = rfn.append_fields(data, 'HPXPIXEL', hppix, usemask=False) depend.setdep(hdr, 'HPXNSIDE', nside) depend.setdep(hdr, 'HPXNEST', True) #ADM add PHOTSYS column, mapped from RELEASE photsys = release_to_photsys(data["RELEASE"]) data = rfn.append_fields(data, 'PHOTSYS', photsys, usemask=False) fitsio.write(filename, data, extname='TARGETS', header=hdr, clobber=True)
def preproc(rawimage, header, primary_header, bias=True, dark=True, pixflat=True, mask=True, bkgsub=False, nocosmic=False, cosmics_nsig=6, cosmics_cfudge=3., cosmics_c2fudge=0.5, ccd_calibration_filename=None, nocrosstalk=False, nogain=False, overscan_per_row=False, use_overscan_row=False, use_savgol=None, nodarktrail=False, remove_scattered_light=False, psf_filename=None, bias_img=None, model_variance=False): ''' preprocess image using metadata in header image = ((rawimage-bias-overscan)*gain)/pixflat Args: rawimage : 2D numpy array directly from raw data file header : dict-like metadata, e.g. from FITS header, with keywords CAMERA, BIASSECx, DATASECx, CCDSECx where x = A, B, C, D for each of the 4 amplifiers (also supports old naming convention 1, 2, 3, 4). primary_header: dict-like metadata fit keywords EXPTIME, DOSVER DATE-OBS is also required if bias, pixflat, or mask=True Optional bias, pixflat, and mask can each be: False: don't apply that step True: use default calibration data for that night ndarray: use that array filename (str or unicode): read HDU 0 and use that Optional overscan features: overscan_per_row : bool, Subtract the overscan_col values row by row from the data. use_overscan_row : bool, Subtract off the overscan_row from the data (default: False). Requires ORSEC in the Header use_savgol : bool, Specify whether to use Savitsky-Golay filter for the overscan. (default: False). Requires use_overscan_row=True to have any effect. Optional variance model if model_variance=True Optional background subtraction with median filtering if bkgsub=True Optional disabling of cosmic ray rejection if nocosmic=True Optional disabling of dark trail correction if nodarktrail=True Optional bias image (testing only) may be provided by bias_img= Optional tuning of cosmic ray rejection parameters: cosmics_nsig: number of sigma above background required cosmics_cfudge: number of sigma inconsistent with PSF required cosmics_c2fudge: fudge factor applied to PSF Optional fit and subtraction of scattered light Returns Image object with member variables: pix : 2D preprocessed image in units of electrons per pixel ivar : 2D inverse variance of image mask : 2D mask of image (0=good) readnoise : 2D per-pixel readnoise of image meta : metadata dictionary TODO: define what keywords are included preprocessing includes the following steps: - bias image subtraction - overscan subtraction (from BIASSEC* keyword defined regions) - readnoise estimation (from BIASSEC* keyword defined regions) - gain correction (from GAIN* keywords) - pixel flat correction - cosmic ray masking - propagation of input known bad pixel mask - inverse variance estimation Notes: The bias image is subtracted before any other calculation to remove any non-uniformities in the overscan regions prior to calculating overscan levels and readnoise. The readnoise is an image not just one number per amp, because the pixflat image also affects the interpreted readnoise. The inverse variance is estimated from the readnoise and the image itself, and thus is biased. ''' log = get_logger() header = header.copy() depend.setdep(header, 'DESI_SPECTRO_CALIB', os.getenv('DESI_SPECTRO_CALIB')) for key in ['DESI_SPECTRO_REDUX', 'SPECPROD']: if key in os.environ: depend.setdep(header, key, os.environ[key]) cfinder = None if ccd_calibration_filename is not False: cfinder = CalibFinder([header, primary_header], yaml_file=ccd_calibration_filename) #- TODO: Check for required keywords first #- Subtract bias image camera = header['CAMERA'].lower() #- convert rawimage to float64 : this is the output format of read_image rawimage = rawimage.astype(np.float64) # Savgol if cfinder and cfinder.haskey("USE_ORSEC"): use_overscan_row = cfinder.value("USE_ORSEC") if cfinder and cfinder.haskey("SAVGOL"): use_savgol = cfinder.value("SAVGOL") # Set bias image, as desired if bias_img is None: bias = get_calibration_image(cfinder, "BIAS", bias, header) else: bias = bias_img #- Check if this file uses amp names 1,2,3,4 (old) or A,B,C,D (new) amp_ids = get_amp_ids(header) #- Double check that we have the necessary keywords missing_keywords = list() for prefix in ['CCDSEC', 'BIASSEC']: for amp in amp_ids: key = prefix + amp if not key in header: log.error('No {} keyword in header'.format(key)) missing_keywords.append(key) if len(missing_keywords) > 0: raise KeyError("Missing keywords {}".format( ' '.join(missing_keywords))) #- Output arrays ny = 0 nx = 0 for amp in amp_ids: yy, xx = parse_sec_keyword(header['CCDSEC%s' % amp]) ny = max(ny, yy.stop) nx = max(nx, xx.stop) image = np.zeros((ny, nx)) readnoise = np.zeros_like(image) #- Load dark if cfinder and cfinder.haskey("DARK") and (dark is not False): #- Exposure time if cfinder and cfinder.haskey("EXPTIMEKEY"): exptime_key = cfinder.value("EXPTIMEKEY") log.info("Using exposure time keyword %s for dark normalization" % exptime_key) else: exptime_key = "EXPTIME" exptime = primary_header[exptime_key] log.info( "Use exptime = {} sec to compute the dark current".format(exptime)) dark_filename = cfinder.findfile("DARK") depend.setdep(header, 'CCD_CALIB_DARK', shorten_filename(dark_filename)) log.info(f'Using DARK model from {dark_filename}') # dark is multipled by exptime, or we use the non-linear dark model in the routine dark = read_dark(filename=dark_filename, exptime=exptime) if dark.shape == image.shape: log.info("dark is trimmed") trimmed_dark_in_electrons = dark dark_is_trimmed = True elif dark.shape == rawimage.shape: log.info("dark is not trimmed") trimmed_dark_in_electrons = np.zeros_like(image) dark_is_trimmed = False else: message = "incompatible dark shape={} when raw shape={} and preproc shape={}".format( dark.shape, rawimage.shape, image.shape) log.error(message) raise ValueError(message) else: dark = False if bias is not False: #- it's an array if bias.shape == rawimage.shape: log.info("subtracting bias") rawimage = rawimage - bias else: raise ValueError('shape mismatch bias {} != rawimage {}'.format( bias.shape, rawimage.shape)) #- Load mask mask = get_calibration_image(cfinder, "MASK", mask, header) if mask is False: mask = np.zeros(image.shape, dtype=np.int32) else: if mask.shape != image.shape: raise ValueError('shape mismatch mask {} != image {}'.format( mask.shape, image.shape)) for amp in amp_ids: # Grab the sections ov_col = parse_sec_keyword(header['BIASSEC' + amp]) if 'ORSEC' + amp in header.keys(): ov_row = parse_sec_keyword(header['ORSEC' + amp]) elif use_overscan_row: log.error('No ORSEC{} keyword; not using overscan_row'.format(amp)) use_overscan_row = False if nogain: gain = 1. else: #- Initial teststand data may be missing GAIN* keywords; don't crash if 'GAIN' + amp in header: gain = header['GAIN' + amp] #- gain = electrons / ADU else: if cfinder and cfinder.haskey('GAIN' + amp): gain = float(cfinder.value('GAIN' + amp)) log.info('Using GAIN{}={} from calibration data'.format( amp, gain)) else: gain = 1.0 log.warning( 'Missing keyword GAIN{} in header and nothing in calib data; using {}' .format(amp, gain)) #- Record what gain value was actually used header['GAIN' + amp] = gain #- Add saturation level if 'SATURLEV' + amp in header: saturlev_adu = header['SATURLEV' + amp] # in ADU else: if cfinder and cfinder.haskey('SATURLEV' + amp): saturlev_adu = float(cfinder.value('SATURLEV' + amp)) log.info('Using SATURLEV{}={} from calibration data'.format( amp, saturlev_adu)) else: saturlev_adu = 2**16 - 1 # 65535 is the max value in the images log.warning( 'Missing keyword SATURLEV{} in header and nothing in calib data; using {} ADU' .format(amp, saturlev_adu)) header['SATULEV' + amp] = (saturlev_adu, "saturation or non lin. level, in ADU, inc. bias") # Generate the overscan images raw_overscan_col = rawimage[ov_col].copy() if use_overscan_row: raw_overscan_row = rawimage[ov_row].copy() overscan_row = np.zeros_like(raw_overscan_row) # Remove overscan_col from overscan_row raw_overscan_squared = rawimage[ov_row[0], ov_col[1]].copy() for row in range(raw_overscan_row.shape[0]): o, r = _overscan(raw_overscan_squared[row]) overscan_row[row] = raw_overscan_row[row] - o # Now remove the overscan_col nrows = raw_overscan_col.shape[0] log.info("nrows in overscan=%d" % nrows) overscan_col = np.zeros(nrows) rdnoise = np.zeros(nrows) if (cfinder and cfinder.haskey('OVERSCAN' + amp) and cfinder.value("OVERSCAN" + amp).upper() == "PER_ROW") or overscan_per_row: log.info( "Subtracting overscan per row for amplifier %s of camera %s" % (amp, camera)) for j in range(nrows): if np.isnan(np.sum(overscan_col[j])): log.warning( "NaN values in row %d of overscan of amplifier %s of camera %s" % (j, amp, camera)) continue o, r = _overscan(raw_overscan_col[j]) #log.info("%d %f %f"%(j,o,r)) overscan_col[j] = o rdnoise[j] = r else: log.info( "Subtracting average overscan for amplifier %s of camera %s" % (amp, camera)) o, r = _overscan(raw_overscan_col) overscan_col += o rdnoise += r if bias is not False: jj = parse_sec_keyword(header['DATASEC' + amp]) o, biasnoise = _overscan(bias[jj]) new_rdnoise = np.sqrt(rdnoise**2 + biasnoise**2) log.info( "Master bias noise for AMP %s = %4.3f ADU, rdnoise %4.3f -> %4.3f ADU" % (amp, biasnoise, np.mean(rdnoise), np.mean(new_rdnoise))) rdnoise = new_rdnoise rdnoise *= gain median_rdnoise = np.median(rdnoise) median_overscan = np.median(overscan_col) log.info("Median rdnoise and overscan= %f %f" % (median_rdnoise, median_overscan)) kk = parse_sec_keyword(header['CCDSEC' + amp]) for j in range(nrows): readnoise[kk][j] = rdnoise[j] header['OVERSCN' + amp] = (median_overscan, 'ADUs (gain not applied)') if gain != 1: rdnoise_message = 'electrons (gain is applied)' gain_message = 'e/ADU (gain applied to image)' else: rdnoise_message = 'ADUs (gain not applied)' gain_message = 'gain not applied to image' header['OBSRDN' + amp] = (median_rdnoise, rdnoise_message) header['GAIN' + amp] = (gain, gain_message) #- Warn/error if measured readnoise is very different from expected if exists if 'RDNOISE' + amp in header: expected_readnoise = header['RDNOISE' + amp] if median_rdnoise < 0.5 * expected_readnoise: log.error( 'Amp {} measured readnoise {:.2f} < 0.5 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) elif median_rdnoise < 0.9 * expected_readnoise: log.warning( 'Amp {} measured readnoise {:.2f} < 0.9 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) elif median_rdnoise > 2.0 * expected_readnoise: log.error( 'Amp {} measured readnoise {:.2f} > 2 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) elif median_rdnoise > 1.2 * expected_readnoise: log.warning( 'Amp {} measured readnoise {:.2f} > 1.2 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) #else: # log.warning('Expected readnoise keyword {} missing'.format('RDNOISE'+amp)) log.info("Measured readnoise for AMP %s = %f" % (amp, median_rdnoise)) #- subtract overscan from data region and apply gain jj = parse_sec_keyword(header['DATASEC' + amp]) data = rawimage[jj].copy() # Subtract columns for k in range(nrows): data[k] -= overscan_col[k] saturlev_elec = gain * (saturlev_adu - np.mean(overscan_col)) header['SATUELE' + amp] = (saturlev_elec, "saturation or non lin. level, in electrons") # And now the rows if use_overscan_row: # Savgol? if use_savgol: log.info("Using savgol") collapse_oscan_row = np.zeros(overscan_row.shape[1]) for col in range(overscan_row.shape[1]): o, _ = _overscan(overscan_row[:, col]) collapse_oscan_row[col] = o oscan_row = _savgol_clipped(collapse_oscan_row, niter=0) oimg_row = np.outer(np.ones(data.shape[0]), oscan_row) data -= oimg_row else: o, r = _overscan(overscan_row) data -= o #- apply saturlev (defined in ADU), prior to multiplication by gain saturated = (rawimage[jj] >= saturlev_adu) mask[kk][saturated] |= ccdmask.SATURATED #- ADC to electrons image[kk] = data * gain if dark is not False: if not dark_is_trimmed: trimmed_dark_in_electrons[kk] = dark[jj] * gain if not nocrosstalk: #- apply cross-talk # the ccd looks like : # C D # A B # for cross talk, we need a symmetric 4x4 flip_matrix # of coordinates ABCD giving flip of both axis # when computing crosstalk of # A B C D # # A AA AB AC AD # B BA BB BC BD # C CA CB CC CD # D DA DB DC BB # orientation_matrix_defines change of orientation # fip_axis_0 = np.array([[1, 1, -1, -1], [1, 1, -1, -1], [-1, -1, 1, 1], [-1, -1, 1, 1]]) fip_axis_1 = np.array([[1, -1, 1, -1], [-1, 1, -1, 1], [1, -1, 1, -1], [-1, 1, -1, 1]]) for a1 in range(len(amp_ids)): amp1 = amp_ids[a1] ii1 = parse_sec_keyword(header['CCDSEC' + amp1]) a1flux = image[ii1] #a1mask=mask[ii1] for a2 in range(len(amp_ids)): if a1 == a2: continue amp2 = amp_ids[a2] if cfinder is None: continue if not cfinder.haskey("CROSSTALK%s%s" % (amp1, amp2)): continue crosstalk = cfinder.value("CROSSTALK%s%s" % (amp1, amp2)) if crosstalk == 0.: continue log.info("Correct for crosstalk=%f from AMP %s into %s" % (crosstalk, amp1, amp2)) a12flux = crosstalk * a1flux.copy() #a12mask=a1mask.copy() if fip_axis_0[a1, a2] == -1: a12flux = a12flux[::-1] #a12mask=a12mask[::-1] if fip_axis_1[a1, a2] == -1: a12flux = a12flux[:, ::-1] #a12mask=a12mask[:,::-1] ii2 = parse_sec_keyword(header['CCDSEC' + amp2]) image[ii2] -= a12flux # mask[ii2] |= a12mask (not sure we really need to propagate the mask) #- Poisson noise variance (prior to dark subtraction and prior to pixel flat field) #- This is biasing, but that's what we have for now poisson_var = image.clip(0) #- subtract dark after multiplication by gain if dark is not False: log.info("subtracting dark") image -= trimmed_dark_in_electrons # measure its noise new_readnoise = np.zeros(readnoise.shape) for amp in amp_ids: kk = parse_sec_keyword(header['CCDSEC' + amp]) o, darknoise = _overscan(trimmed_dark_in_electrons[kk]) new_readnoise[kk] = np.sqrt(readnoise[kk]**2 + darknoise**2) log.info( "Master dark noise for AMP %s = %4.3f elec, rdnoise %4.3f -> %4.3f elec" % (amp, darknoise, np.mean( readnoise[kk]), np.mean(new_readnoise[kk]))) readnoise = new_readnoise #- Correct for dark trails if any if not nodarktrail and cfinder is not None: for amp in amp_ids: if cfinder.haskey("DARKTRAILAMP%s" % amp): amplitude = cfinder.value("DARKTRAILAMP%s" % amp) width = cfinder.value("DARKTRAILWIDTH%s" % amp) ii = _parse_sec_keyword(header["CCDSEC" + amp]) log.info( "Removing dark trails for amplifier %s with width=%3.1f and amplitude=%5.4f" % (amp, width, amplitude)) correct_dark_trail(image, ii, left=((amp == "B") | (amp == "D")), width=width, amplitude=amplitude) #- Divide by pixflat image pixflat = get_calibration_image(cfinder, "PIXFLAT", pixflat, header) if pixflat is not False: if pixflat.shape != image.shape: raise ValueError('shape mismatch pixflat {} != image {}'.format( pixflat.shape, image.shape)) almost_zero = 0.001 if np.all(pixflat > almost_zero): image /= pixflat readnoise /= pixflat poisson_var /= pixflat**2 else: good = (pixflat > almost_zero) image[good] /= pixflat[good] readnoise[good] /= pixflat[good] poisson_var[good] /= pixflat[good]**2 mask[~good] |= ccdmask.PIXFLATZERO lowpixflat = (0 < pixflat) & (pixflat < 0.1) if np.any(lowpixflat): mask[lowpixflat] |= ccdmask.PIXFLATLOW #- Inverse variance, estimated directly from the data (BEWARE: biased!) var = poisson_var + readnoise**2 ivar = np.zeros(var.shape) ivar[var > 0] = 1.0 / var[var > 0] #- Ridiculously high readnoise is bad mask[readnoise > 100] |= ccdmask.BADREADNOISE if bkgsub: bkg = _background(image, header) image -= bkg img = Image(image, ivar=ivar, mask=mask, meta=header, readnoise=readnoise, camera=camera) #- update img.mask to mask cosmic rays if not nocosmic: cosmics.reject_cosmic_rays(img, nsig=cosmics_nsig, cfudge=cosmics_cfudge, c2fudge=cosmics_c2fudge) mask = img.mask xyset = None if model_variance: psf = None if psf_filename is None: psf_filename = cfinder.findfile("PSF") depend.setdep(header, 'CCD_CALIB_PSF', shorten_filename(psf_filename)) xyset = read_xytraceset(psf_filename) fiberflat = None with_spectral_smoothing = True with_sky_model = True if with_sky_model: log.debug("Will use a sky model to model the spectra") fiberflat_filename = cfinder.findfile("FIBERFLAT") depend.setdep(header, 'CCD_CALIB_FIBERFLAT', shorten_filename(fiberflat_filename)) if fiberflat_filename is not None: fiberflat = read_fiberflat(fiberflat_filename) log.info("compute an image model after dark correction and pixel flat") nsig = 5. mimage = compute_image_model( img, xyset, fiberflat=fiberflat, with_spectral_smoothing=with_spectral_smoothing, with_sky_model=with_sky_model, spectral_smoothing_nsig=nsig, psf=psf) # here we bring back original image for large outliers # this allows to have a correct ivar for cosmic rays and bright sources eps = 0.1 out = (((ivar > 0) * (image - mimage)**2 / (1. / (ivar + (ivar == 0)) + (0.1 * mimage)**2)) > nsig**2) # out &= (image>mimage) # could request this to be conservative on the variance ... but this could cause other issues mimage[out] = image[out] log.info("use image model to compute variance") if bkgsub: mimage += bkg if pixflat is not False: # undo pixflat mimage *= pixflat if dark is not False: mimage += dark poisson_var = mimage.clip(0) if pixflat is not False: if np.all(pixflat > almost_zero): poisson_var /= pixflat**2 else: poisson_var[good] /= pixflat[good]**2 var = poisson_var + readnoise**2 ivar[var > 0] = 1.0 / var[var > 0] # regenerate img object img = Image(image, ivar=ivar, mask=mask, meta=header, readnoise=readnoise, camera=camera) if remove_scattered_light: if xyset is None: if psf_filename is None: psf_filename = cfinder.findfile("PSF") depend.setdep(header, 'SCATTERED_LIGHT_PSF', shorten_filename(psf_filename)) xyset = read_xytraceset(psf_filename) img.pix -= model_scattered_light(img, xyset) #- Extend header with primary header keywords too addkeys(img.meta, primary_header) return img
def get_calibration_image(cfinder, keyword, entry, header=None): """Reads a calibration file Args: cfinder : None or CalibFinder object keyword : BIAS, MASK, or PIXFLAT entry : boolean or filename or image if entry==False return False if entry==True use calibration filename from calib. config and read it if entry==str use this for the filename if entry==image return input Options: header : if not None, update header['CAL...'] = calib provenance returns: 2D numpy array with calibration image """ log = get_logger() #- set the header to something so that we don't have to keep checking it if header is None: header = dict() calkey = 'CCD_CALIB_{}'.format(keyword.upper()) if entry is False: depend.setdep(header, calkey, 'None') return False # we don't want do anything filename = None if entry is True: # we have to find the filename if cfinder is None: log.error("no calibration data was found") raise ValueError("no calibration data was found") if cfinder.haskey(keyword): filename = cfinder.findfile(keyword) depend.setdep(header, calkey, shorten_filename(filename)) else: depend.setdep(header, calkey, 'None') return False # we say in the calibration data we don't need this elif isinstance(entry, str): filename = entry depend.setdep(header, calkey, shorten_filename(filename)) else: depend.setdep(header, calkey, 'Unknown image') return entry # it's expected to be an image array log.info("Using %s %s" % (keyword, filename)) if keyword == "BIAS": return read_bias(filename=filename) elif keyword == "MASK": return read_mask(filename=filename) elif keyword == "PIXFLAT": return read_pixflat(filename=filename) elif keyword == "DARK": raise ValueError("Dark are now treated separately.") else: log.error("Don't known how to read %s in %s" % (keyword, path)) raise ValueError("Don't known how to read %s in %s" % (keyword, path)) return False
def write_randoms(filename, data, indir=None, hdr=None, nside=None, density=None): """Write a catalogue of randoms and associated pixel-level information. Parameters ---------- filename : :class:`str` Output file name. data : :class:`~numpy.ndarray` Array of randoms to write to file. indir : :class:`str`, optional, defaults to None Name of input Legacy Survey Data Release directory, write to header of output file if passed (and if not None). hdr : :class:`str`, optional, defaults to `None` If passed, use this header to start the header of the output `filename`. nside: :class:`int` If passed, add a column to the randoms array popluated with HEALPixels at resolution `nside`. density: :class:`int` Number of points per sq. deg. at which the catalog was generated, write to header of the output file if not None. """ # ADM create header to include versions, etc. If a `hdr` was # ADM passed, then use it, if not then create a new header. if hdr is None: hdr = fitsio.FITSHDR() depend.setdep(hdr, 'desitarget', desitarget_version) depend.setdep(hdr, 'desitarget-git', gitversion()) if indir is not None: depend.setdep(hdr, 'input-data-release', indir) # ADM note that if 'dr' is not in the indir DR # ADM directory structure, garbage will # ADM be rewritten gracefully in the header. drstring = 'dr'+indir.split('dr')[-1][0] depend.setdep(hdr, 'photcat', drstring) # ADM also write the mask bits header information # ADM from a mask bits file in this DR. from glob import iglob files = iglob(indir+'/coadd/*/*/*maskbits*') # ADM we built an iterator over mask bits files for speed # ADM if there are no such files to iterate over, just pass. try: fn = next(files) mbhdr = fitsio.read_header(fn) # ADM extract the keys that include the string 'BITNM'. bncols = [key for key in mbhdr.keys() if 'BITNM' in key] for col in bncols: hdr[col] = {'name': col, 'value': mbhdr[col], 'comment': mbhdr.get_comment(col)} except StopIteration: pass # ADM add HEALPix column, if requested by input. if nside is not None: theta, phi = np.radians(90-data["DEC"]), np.radians(data["RA"]) hppix = hp.ang2pix(nside, theta, phi, nest=True) data = rfn.append_fields(data, 'HPXPIXEL', hppix, usemask=False) hdr['HPXNSIDE'] = nside hdr['HPXNEST'] = True # ADM add density of points if requested by input. if density is not None: hdr['DENSITY'] = density fitsio.write(filename, data, extname='RANDOMS', header=hdr, clobber=True)
def write_skies(filename, data, indir=None, apertures_arcsec=None, nskiespersqdeg=None, nside=None): """Write a target catalogue of sky locations. Parameters ---------- filename : :class:`str` Output target selection file name data : :class:`~numpy.ndarray` Array of skies to write to file. indir : :class:`str`, optional Name of input Legacy Survey Data Release directory, write to header of output file if passed (and if not None). apertures_arcsec : :class:`list` or `float`, optional list of aperture radii in arcseconds to write each aperture as an individual line in the header, if passed (and if not None). nskiespersqdeg : :class:`float`, optional Number of sky locations generated per sq. deg., write to header of output file if passed (and if not None). nside: :class:`int`, optional If passed, add a column to the skies array popluated with HEALPixels at resolution `nside`. """ nskies = len(data) # ADM force OBSCONDITIONS to be 65535 # ADM (see https://github.com/desihub/desitarget/pull/313). data["OBSCONDITIONS"] = 2**16-1 # - Create header to include versions, etc. hdr = fitsio.FITSHDR() depend.setdep(hdr, 'desitarget', desitarget_version) depend.setdep(hdr, 'desitarget-git', gitversion()) if indir is not None: depend.setdep(hdr, 'input-data-release', indir) # ADM note that if 'dr' is not in the indir DR # ADM directory structure, garbage will # ADM be rewritten gracefully in the header. drstring = 'dr'+indir.split('dr')[-1][0] depend.setdep(hdr, 'photcat', drstring) if apertures_arcsec is not None: for i, ap in enumerate(apertures_arcsec): apname = "AP{}".format(i) apsize = ap hdr[apname] = apsize if nskiespersqdeg is not None: hdr['NPERSDEG'] = nskiespersqdeg # ADM add HEALPix column, if requested by input. if nside is not None: theta, phi = np.radians(90-data["DEC"]), np.radians(data["RA"]) hppix = hp.ang2pix(nside, theta, phi, nest=True) data = rfn.append_fields(data, 'HPXPIXEL', hppix, usemask=False) hdr['HPXNSIDE'] = nside hdr['HPXNEST'] = True # ADM populate SUBPRIORITY with a reproducible random float. if "SUBPRIORITY" in data.dtype.names: np.random.seed(616) data["SUBPRIORITY"] = np.random.random(nskies) fitsio.write(filename, data, extname='SKY_TARGETS', header=hdr, clobber=True)
def write_targets(filename, data, indir=None, qso_selection=None, sandboxcuts=False, nside=None, survey="?", nsidefile=None, hpxlist=None): """Write a target catalogue. Parameters ---------- filename : :class:`str` output target selection file. data : :class:`~numpy.ndarray` numpy structured array of targets to save. indir, qso_selection : :class:`str`, optional, default to `None` If passed, note these as the input directory and quasar selection method in the output file header. sandboxcuts : :class:`bool`, optional, defaults to ``False`` If passed, note this whether we ran target seletion in the sandbox in the output file header. nside : :class:`int`, optional, defaults to `None` If passed, add a column to the targets array popluated with HEALPixels at resolution `nside`. survey : :class:`str`, optional, defaults to "?" Written to output file header as the keyword `SURVEY`. nsidefile : :class:`int`, optional, defaults to `None` Passed to indicate in the output file header that the targets have been limited to only certain HEALPixels at a given nside. Used in conjunction with `hpxlist`. hpxlist : :class:`list`, optional, defaults to `None` Passed to indicate in the output file header that the targets have been limited to only this list of HEALPixels. Used in conjunction with `nsidefile`. """ # FIXME: assert data and tsbits schema # ADM use RELEASE to determine the release string for the input targets. ntargs = len(data) if ntargs == 0: # ADM if there are no targets, then we don't know the Data Release. drstring = 'unknowndr' else: drint = np.max(data['RELEASE']//1000) drstring = 'dr'+str(drint) # - Create header to include versions, etc. hdr = fitsio.FITSHDR() depend.setdep(hdr, 'desitarget', desitarget_version) depend.setdep(hdr, 'desitarget-git', gitversion()) depend.setdep(hdr, 'sandboxcuts', sandboxcuts) depend.setdep(hdr, 'photcat', drstring) if indir is not None: depend.setdep(hdr, 'tractor-files', indir) if qso_selection is None: log.warning('qso_selection method not specified for output file') depend.setdep(hdr, 'qso-selection', 'unknown') else: depend.setdep(hdr, 'qso-selection', qso_selection) # ADM add HEALPix column, if requested by input. if nside is not None: theta, phi = np.radians(90-data["DEC"]), np.radians(data["RA"]) hppix = hp.ang2pix(nside, theta, phi, nest=True) data = rfn.append_fields(data, 'HPXPIXEL', hppix, usemask=False) hdr['HPXNSIDE'] = nside hdr['HPXNEST'] = True # ADM populate SUBPRIORITY with a reproducible random float. if "SUBPRIORITY" in data.dtype.names: np.random.seed(616) data["SUBPRIORITY"] = np.random.random(ntargs) # ADM add the type of survey (main, commissioning; or "cmx", sv) to the header. hdr["SURVEY"] = survey # ADM record whether this file has been limited to only certain HEALPixels. if hpxlist is not None or nsidefile is not None: # ADM hpxlist and nsidefile need to be passed together. if hpxlist is None or nsidefile is None: msg = 'Both hpxlist (={}) and nsidefile (={}) need to be set' \ .format(hpxlist, nsidefile) log.critical(msg) raise ValueError(msg) hdr['FILENSID'] = nsidefile hdr['FILENEST'] = True hdr['FILEHPX'] = hpxlist fitsio.write(filename, data, extname='TARGETS', header=hdr, clobber=True)