def test_estimate_competence_all_ones(index, expected): query = np.array([1, 1]) a_priori_test = APriori(create_pool_classifiers()) a_priori_test.processed_dsel = dsel_processed_ex1 a_priori_test.dsel_scores = dsel_scores_all_ones a_priori_test.DSEL_target = y_dsel_ex1 a_priori_test.n_classes = 2 a_priori_test.neighbors = neighbors_ex1[index, :] a_priori_test.distances = distances_all_ones[index, :] a_priori_test.DFP_mask = [1, 1, 1] competences = a_priori_test.estimate_competence(query.reshape(1, -1)) assert np.isclose(competences, expected).all()
def test_estimate_competence_kuncheva_ex(): query = np.array([1, 1]) a_priori_test = APriori([create_base_classifier(return_value=1)], k=k_ex_kuncheva) a_priori_test.processed_dsel = dsel_processed_kuncheva a_priori_test.dsel_scores = dsel_scores_ex_kuncheva a_priori_test.DSEL_target = y_dsel_ex_kuncheva_independent a_priori_test.n_classes = n_classes_ex_kuncheva a_priori_test.neighbors = neighbors_ex_kuncheva a_priori_test.distances = distances_ex_kuncheva a_priori_test.DFP_mask = [1] competences = a_priori_test.estimate_competence(query.reshape(1, -1)) assert np.isclose(competences, 0.70, atol=0.01)
def test_estimate_competence_batch(): query = np.ones((3, 2)) expected = np.array([[0.333333, 0.50000, 0.40000], [0.666666, 0.50000, 0.60000], [0.000000, 0.50000, 0.20000]]) # Using 3 neighbors to facilitate the calculations a_priori_test = APriori(create_pool_classifiers(), 3) a_priori_test.processed_dsel = dsel_processed_ex1 a_priori_test.dsel_scores = dsel_scores_ex1 a_priori_test.DSEL_target = y_dsel_ex1 a_priori_test.n_classes = 2 a_priori_test.neighbors = neighbors_ex1[:, 0:3] a_priori_test.distances = distances_all_ones[:, 0:3] a_priori_test.DFP_mask = np.ones((3, 3)) competences = a_priori_test.estimate_competence(query) assert np.allclose(competences, expected, atol=0.01)