def test_select(): knop_test = KNOP(create_pool_classifiers()) competences = np.ones(3) competences[0] = 0 expected = np.atleast_2d([False, True, True]) selected = knop_test.select(competences) assert np.array_equal(expected, selected)
def test_weights_zero(): knop_test = KNOP(create_pool_classifiers()) knop_test.fit(X_dsel_ex1, y_dsel_ex1) competences = np.zeros((1, 3)) result = knop_test.select(competences) assert np.all(result)
def test_weights_zero(): query = np.atleast_2d([1, 1]) knop_test = KNOP(create_pool_classifiers()) knop_test.fit(X_dsel_ex1, y_dsel_ex1) knop_test.estimate_competence = MagicMock(return_value=np.zeros(3)) result = knop_test.select(query) assert np.array_equal(result, np.array([0, 1, 0]))
def test_weights_zero(): knop_test = KNOP() competences = np.zeros((1, 3)) result = knop_test.select(competences) assert np.all(result)