def test_estimate_competence_ones(): query = np.atleast_2d([1, 1]) probabilistic_test = BaseProbabilistic(create_pool_classifiers()) probabilistic_test.k_ = 7 distances = distances_ex1[0, 0:3].reshape(1, -1) neighbors = np.array([[0, 2, 1]]) probabilistic_test.C_src_ = np.ones((3, 3)) competence = probabilistic_test.estimate_competence( query, neighbors, distances) assert (competence == 1.0).all()
def test_estimate_competence_ones(example_estimate_competence): distances = example_estimate_competence[3] query = np.atleast_2d([1, 1]) probabilistic_test = BaseProbabilistic() probabilistic_test.k_ = 7 distances = distances[0, 0:3].reshape(1, -1) neighbors = np.array([[0, 2, 1]]) probabilistic_test.C_src_ = np.ones((3, 3)) competence = probabilistic_test.estimate_competence(neighbors, distances) assert (competence == 1.0).all()
def test_estimate_competence_zeros(example_estimate_competence): distances = example_estimate_competence[3] query = np.atleast_2d([1, 1]) probabilistic_test = BaseProbabilistic() probabilistic_test.k_ = 7 distances = distances[0, 0:3].reshape(1, -1) neighbors = np.array([[0, 2, 1]]) probabilistic_test.C_src_ = np.zeros((3, 3)) competence = probabilistic_test.estimate_competence( competence_region=neighbors, distances=distances) assert np.sum(competence) == 0.0
def test_estimate_competence_batch(): n_samples = 10 query = np.ones((n_samples, 2)) probabilistic_test = BaseProbabilistic() probabilistic_test.k_ = 7 distances = np.tile([0.5, 1.0, 2.0], (n_samples, 1)) neighbors = np.tile([0, 1, 2], (n_samples, 1)) probabilistic_test.C_src_ = np.array( [[0.5, 0.2, 0.8], [1.0, 1.0, 1.0], [1.0, 0.6, 0.3]]) expected = np.tile([0.665, 0.458, 0.855], (n_samples, 1)) competence = probabilistic_test.estimate_competence( competence_region=neighbors, distances=distances) assert np.allclose(competence, expected, atol=0.01)