def test_predict(): X = X_dsel_ex1 y = y_dsel_ex1 pool_classifiers = create_pool_classifiers() single_best_test = SingleBest(pool_classifiers) single_best_test.fit(X, y) predicted_labels = single_best_test.predict(X) assert np.equal(predicted_labels, 0).all()
def test_predict(create_X_y, create_pool_classifiers): X, y = create_X_y pool_classifiers = create_pool_classifiers single_best_test = SingleBest(pool_classifiers=pool_classifiers) single_best_test.fit(X, y) predicted_labels = single_best_test.predict(X) assert np.equal(predicted_labels, 0).all()
def test_label_encoder_base_ensemble(): from sklearn.ensemble import RandomForestClassifier X, y = make_classification() y[y == 1] = 2 y = y.astype(np.float) pool = RandomForestClassifier().fit(X, y) sb = SingleBest(pool) sb.fit(X, y) pred = sb.predict(X) assert np.isin(sb.classes_, pred).all()
def test_not_fitted(): single_best_test = SingleBest(create_pool_classifiers()) with pytest.raises(NotFittedError): single_best_test.predict(np.array([1, -1]))
def test_not_fitted(): single_best_test = SingleBest() with pytest.raises(NotFittedError): single_best_test.predict(np.array([[1, -1]]))
def test_label_encoder(create_label_encoder_test): X, y, pool = create_label_encoder_test sb = SingleBest(pool).fit(X, y) pred = sb.predict(X) assert np.array_equal(pred, y)