def test_event_detection(): for ffmt in D.available_float_fmt(): if ffmt == 'float16': continue D.set_float_fmt(ffmt) print("Testing event detection for float format {}".format(D.float_fmt())) de_mat = D.array([[0.0, 1.0],[-1.0, 0.0]]) @de.rhs_prettifier("""[vx, -x+t]""") def rhs(t, state, **kwargs): return de_mat @ state + D.array([0.0, t]) def analytic_soln(t, initial_conditions): c1 = initial_conditions[0] c2 = initial_conditions[1] - 1 return D.array([ c2 * D.sin(t) + c1 * D.cos(t) + t, c2 * D.cos(t) - c1 * D.sin(t) + 1 ]) y_init = D.array([1., 0.]) def time_event(t, y, **kwargs): return t - D.pi/8 time_event.is_terminal = True time_event.direction = 0 a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, D.pi/4), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5) with de.utilities.BlockTimer(section_label="Integrator Tests") as sttimer: for i in sorted(set(de.available_methods(False).values()), key=lambda x:x.__name__): try: a.set_method(i) print("Testing {}".format(a.integrator)) a.integrate(eta=True, events=time_event) if D.abs(a.t[-1] - D.pi/8) > 10*D.epsilon(): print("Event detection with integrator {} failed with t[-1] = {}".format(a.integrator, a.t[-1])) raise RuntimeError("Failed to detect event for integrator {}".format(str(i))) else: print("Event detection with integrator {} succeeded with t[-1] = {}".format(a.integrator, a.t[-1])) a.reset() except Exception as e: raise e raise RuntimeError("Test failed for integration method: {}".format(a.integrator)) print("") print("{} backend test passed successfully!".format(D.backend()))
def test_getter_setters(): for ffmt in D.available_float_fmt(): D.set_float_fmt(ffmt) print("Testing {} float format".format(D.float_fmt())) de_mat = D.array([[0.0, 1.0],[-1.0, 0.0]]) @de.rhs_prettifier("""[vx, -x+t]""") def rhs(t, state, **kwargs): return de_mat @ state + D.array([0.0, t]) def analytic_soln(t, initial_conditions): c1 = initial_conditions[0] c2 = initial_conditions[1] - 1 return D.array([ c2 * D.sin(t) + c1 * D.cos(t) + t, c2 * D.cos(t) - c1 * D.sin(t) + 1 ]) def kbinterrupt_cb(ode_sys): if ode_sys[-1][0] > D.pi: raise KeyboardInterrupt("Test Interruption and Catching") y_init = D.array([1., 0.]) a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2*D.pi), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5) assert(a.t0 == 0) assert(a.tf == 2 * D.pi) assert(a.dt == 0.01) assert(a.get_current_time() == a.t0) assert(a.rtol == D.epsilon()**0.5) assert(a.atol == D.epsilon()**0.5) assert(D.norm(a.y[0] - y_init) <= 2 * D.epsilon()) assert(D.norm(a.y[-1] - y_init) <= 2 * D.epsilon()) a.set_kick_vars([True, False]) assert(a.staggered_mask == [True, False]) pval = 3 * D.pi a.tf = pval assert(a.tf == pval) pval = -1.0 a.t0 = pval assert(a.t0 == pval) assert(a.dt == 0.01) a.rtol = 1e-3 assert(a.rtol == 1e-3) a.atol = 1e-3 assert(a.atol == 1e-3) for method in de.available_methods(): a.set_method(method) assert(isinstance(a.integrator, de.available_methods(False)[method])) for method in de.available_methods(): a.method = method assert(isinstance(a.integrator, de.available_methods(False)[method])) a.constants['k'] = 5.0 assert(a.constants['k'] == 5.0) a.constants.pop('k') assert('k' not in a.constants.keys()) new_constants = dict(k=10.0) a.constants = new_constants assert(a.constants['k'] == 10.0) del a.constants assert(not bool(a.constants))
def test_getter_setters(): for ffmt in D.available_float_fmt(): D.set_float_fmt(ffmt) print("Testing {} float format".format(D.float_fmt())) de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]]) @de.rhs_prettifier("""[vx, -x+t]""") def rhs(t, state, **kwargs): return de_mat @ state + D.array([0.0, t]) def analytic_soln(t, initial_conditions): c1 = initial_conditions[0] c2 = initial_conditions[1] - 1 return D.array([ c2 * D.sin(t) + c1 * D.cos(t) + t, c2 * D.cos(t) - c1 * D.sin(t) + 1 ]) def kbinterrupt_cb(ode_sys): if ode_sys[-1][0] > D.pi: raise KeyboardInterrupt("Test Interruption and Catching") y_init = D.array([1., 0.]) a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2 * D.pi), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5) assert (a.get_end_time() == 2 * D.pi) assert (a.get_start_time() == 0) assert (a.dt == 0.01) assert (a.rtol == D.epsilon()**0.5) assert (a.atol == D.epsilon()**0.5) assert (D.norm(a.y[0] - y_init) <= 2 * D.epsilon()) assert (D.norm(a.y[-1] - y_init) <= 2 * D.epsilon()) try: a.set_kick_vars([True, False]) except Exception as e: raise RuntimeError("set_kick_vars failed with: {}".format(e)) assert (a.staggered_mask == [True, False]) pval = 3 * D.pi try: a.set_end_time(pval) except Exception as e: raise RuntimeError("set_end_time failed with: {}".format(e)) assert (a.get_end_time() == pval) pval = -1.0 try: a.set_start_time(pval) except Exception as e: raise RuntimeError("set_start_time failed with: {}".format(e)) assert (a.get_start_time() == pval) assert (a.get_step_size() == 0.01) try: a.set_rtol(1e-3) except Exception as e: raise RuntimeError("set_rtol failed with: {}".format(e)) assert (a.get_rtol() == 1e-3) try: a.set_atol(1e-3) except Exception as e: raise RuntimeError("set_atol failed with: {}".format(e)) assert (a.get_atol() == 1e-3) try: a.set_method("RK45CK") except Exception as e: raise RuntimeError("set_method failed with: {}".format(e)) assert (isinstance(a.integrator, de.available_methods(False)["RK45CK"])) try: a.add_constants(k=5.0) except Exception as e: raise RuntimeError("add_constants failed with: {}".format(e)) assert (a.consts['k'] == 5.0) try: a.remove_constants('k') except Exception as e: raise RuntimeError("remove_constants failed with: {}".format(e)) assert ('k' not in a.consts.keys())
def test_gradients(): for ffmt in D.available_float_fmt(): D.set_float_fmt(ffmt) print("Testing {} float format".format(D.float_fmt())) import torch torch.set_printoptions(precision=17) torch.set_num_threads(1) torch.autograd.set_detect_anomaly(True) class NNController(torch.nn.Module): def __init__(self, in_dim=2, out_dim=2, inter_dim=50, append_time=False): super().__init__() self.append_time = append_time self.net = torch.nn.Sequential( torch.nn.Linear(in_dim + (1 if append_time else 0), inter_dim), torch.nn.Softplus(), torch.nn.Linear(inter_dim, out_dim), torch.nn.Sigmoid()) for idx, m in enumerate(self.net.modules()): if isinstance(m, torch.nn.Linear): torch.nn.init.xavier_normal_(m.weight, gain=1.0) torch.nn.init.constant_(m.bias, 0.0) def forward(self, t, y, dy): if self.append_time: return self.net( torch.cat([y.view(-1), dy.view(-1), t.view(-1)])) else: return self.net(torch.cat([y, dy])) class SimpleODE(torch.nn.Module): def __init__(self, inter_dim=10, k=1.0): super().__init__() self.nn_controller = NNController(in_dim=4, out_dim=1, inter_dim=inter_dim) self.A = torch.tensor([[0.0, 1.0], [-k, -1.0]], requires_grad=True) def forward(self, t, y, params=None): if not isinstance(t, torch.Tensor): torch_t = torch.tensor(t) else: torch_t = t if not isinstance(y, torch.Tensor): torch_y = torch.tensor(y) else: torch_y = y if params is not None: if not isinstance(params, torch.Tensor): torch_params = torch.tensor(params) else: torch_params = params dy = torch.matmul(self.A, torch_y) controller_effect = self.nn_controller( torch_t, torch_y, dy) if params is None else params return dy + torch.cat( [torch.tensor([0.0]), (controller_effect * 2.0 - 1.0)]) with de.utilities.BlockTimer(section_label="Integrator Tests"): for i in sorted(set(de.available_methods(False).values()), key=lambda x: x.__name__): try: yi1 = D.array([1.0, 0.0], requires_grad=True) df = SimpleODE(k=1.0) a = de.OdeSystem(df, yi1, t=(0, 1.), dt=0.0675, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5) a.set_method(i) a.integrate(eta=True) dyfdyi = D.jacobian(a.y[-1], a.y[0]) dyi = D.array([0.0, 1.0]) * D.epsilon()**0.5 dyf = D.einsum("nk,k->n", dyfdyi, dyi) yi2 = yi1 + dyi b = de.OdeSystem(df, yi2, t=(0, 1.), dt=0.0675, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5) b.set_method(i) b.integrate(eta=True) true_diff = b.y[-1] - a.y[-1] print(D.norm(true_diff - dyf), D.epsilon()**0.5) assert (D.allclose(true_diff, dyf, rtol=4 * D.epsilon()**0.5, atol=4 * D.epsilon()**0.5)) print("{} method test succeeded!".format(a.integrator)) except: raise RuntimeError( "Test failed for integration method: {}".format( a.integrator)) print("") print("{} backend test passed successfully!".format(D.backend()))
import desolver as de import desolver.backend as D import pytest integrator_set = set(de.available_methods(False).values()) integrator_set = sorted(integrator_set, key=lambda x: x.__name__) explicit_integrator_set = [ pytest.param(intg, marks=pytest.mark.explicit) for intg in integrator_set if not intg.__implicit__ ] implicit_integrator_set = [ pytest.param(intg, marks=pytest.mark.implicit) for intg in integrator_set if intg.__implicit__ ] if D.backend() == 'torch': devices_set = [pytest.param('cpu', marks=pytest.mark.cpu)] import torch if torch.cuda.is_available(): devices_set.insert(0, pytest.param('cuda', marks=pytest.mark.gpu)) else: devices_set = [None] dt_set = [D.pi / 307, D.pi / 512] ffmt_set = D.available_float_fmt() ffmt_param = pytest.mark.parametrize('ffmt', ffmt_set) integrator_param = pytest.mark.parametrize('integrator', explicit_integrator_set + implicit_integrator_set) richardson_param = pytest.mark.parametrize('use_richardson_extrapolation', [True, False]) device_param = pytest.mark.parametrize('device', devices_set) dt_param = pytest.mark.parametrize('dt', dt_set)
def test_getter_setters(ffmt): D.set_float_fmt(ffmt) if D.backend() == 'torch': import torch torch.set_printoptions(precision=17) torch.autograd.set_detect_anomaly(True) print("Testing {} float format".format(D.float_fmt())) de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]]) @de.rhs_prettifier("""[vx, -x+t]""") def rhs(t, state, **kwargs): return de_mat @ state + D.array([0.0, t]) y_init = D.array([1., 0.]) a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2 * D.pi), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5) assert (a.t0 == 0) assert (a.tf == 2 * D.pi) assert (a.dt == 0.01) assert (a.get_current_time() == a.t0) assert (a.rtol == D.epsilon()**0.5) assert (a.atol == D.epsilon()**0.5) assert (D.norm(a.y[0] - y_init) <= 2 * D.epsilon()) assert (D.norm(a.y[-1] - y_init) <= 2 * D.epsilon()) a.set_kick_vars([True, False]) assert (a.staggered_mask == [True, False]) pval = 3 * D.pi a.tf = pval assert (a.tf == pval) pval = -1.0 a.t0 = pval assert (a.t0 == pval) assert (a.dt == 0.01) a.rtol = 1e-3 assert (a.rtol == 1e-3) a.atol = 1e-3 assert (a.atol == 1e-3) for method in de.available_methods(): a.set_method(method) assert (isinstance(a.integrator, de.available_methods(False)[method])) for method in de.available_methods(): a.method = method assert (isinstance(a.integrator, de.available_methods(False)[method])) a.constants['k'] = 5.0 assert (a.constants['k'] == 5.0) a.constants.pop('k') assert ('k' not in a.constants.keys()) new_constants = dict(k=10.0) a.constants = new_constants assert (a.constants['k'] == 10.0) del a.constants assert (not bool(a.constants))
def test_float_formats(): for ffmt in D.available_float_fmt(): D.set_float_fmt(ffmt) print("Testing {} float format".format(D.float_fmt())) de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]]) @de.rhs_prettifier("""[vx, -x+t]""") def rhs(t, state, **kwargs): return de_mat @ state + D.array([0.0, t]) def analytic_soln(t, initial_conditions): c1 = initial_conditions[0] c2 = initial_conditions[1] - 1 return D.array([ c2 * D.sin(t) + c1 * D.cos(t) + t, c2 * D.cos(t) - c1 * D.sin(t) + 1 ]) def kbinterrupt_cb(ode_sys): if ode_sys[-1][0] > D.pi: raise KeyboardInterrupt("Test Interruption and Catching") y_init = D.array([1., 0.]) a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2 * D.pi), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5) with de.utilities.BlockTimer( section_label="Integrator Tests") as sttimer: for i in sorted(set(de.available_methods(False).values()), key=lambda x: x.__name__): if "Heun-Euler" in i.__name__ and D.float_fmt( ) == "gdual_real128": print( "skipping {} due to ridiculous timestep requirements.". format(i)) continue try: a.set_method(i) print("Testing {}".format(a.integrator)) try: a.integrate(callback=kbinterrupt_cb, eta=True) except KeyboardInterrupt as e: pass try: a.integrate(eta=True) except: raise max_diff = D.max( D.abs(analytic_soln(a.t[-1], a.y[0]) - a.y[-1])) if a.method.__adaptive__ and max_diff >= a.atol * 10 + D.epsilon( ): print( "{} Failed with max_diff from analytical solution = {}" .format(a.integrator, max_diff)) raise RuntimeError( "Failed to meet tolerances for adaptive integrator {}" .format(str(i))) else: print( "{} Succeeded with max_diff from analytical solution = {}" .format(a.integrator, max_diff)) a.reset() except Exception as e: print(e) raise RuntimeError( "Test failed for integration method: {}".format( a.integrator)) print("") print("{} backend test passed successfully!".format(D.backend()))