c = d["sim_c"] x1 = d["sim_x1"] alpha = 0.15 beta = 4.0 hist_all, bins = np.histogram(mB, bins=200) hist_passed, _ = np.histogram(mB[mask], bins=bins) binc = 0.5 * (bins[:-1] + bins[1:]) ratio = 1.0 * hist_passed / hist_all inter = interp1d(ratio, binc) mean = inter(0.5) width = 0.5 * (inter(0.16) - inter(0.84)) width += alpha * np.std(x1) + beta * np.std(c) return mean, width + 0.02 if __name__ == "__main__": file = os.path.abspath(__file__) stan_model = os.path.dirname(file) + "/model.stan" mB_mean, mB_width = get_approximate_mb_correction() print(mB_mean, mB_width) data = { "mB_mean": mB_mean, "mB_width": mB_width } print("Running %s" % file) run(data, stan_model, file, weight_function=add_weight_to_chain)
import os from dessn.models.d_simple_stan.run import run if __name__ == "__main__": file = os.path.abspath(__file__) stan_model = os.path.dirname(file) + "/model.stan" data = {"add_sim": 3000} print("Running %s" % file) run(data, stan_model, file)