示例#1
0
    def build_graph(self, *inputs):
        inputs = dict(zip(self.input_names, inputs))
        num_fpn_level = len(cfg.FPN.ANCHOR_STRIDES)
        assert len(cfg.RPN.ANCHOR_SIZES) == num_fpn_level
        is_training = get_current_tower_context().is_training

        all_anchors_fpn = get_all_anchors_fpn()
        multilevel_anchors = [
            RPNAnchors(all_anchors_fpn[i],
                       inputs['anchor_labels_lvl{}'.format(i + 2)],
                       inputs['anchor_boxes_lvl{}'.format(i + 2)])
            for i in range(len(all_anchors_fpn))
        ]

        image = self.preprocess(inputs['image'])  # 1CHW
        image_shape2d = tf.shape(image)[2:]  # h,w

        c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK)
        p23456 = fpn_model('fpn', c2345)
        self.slice_feature_and_anchors(image_shape2d, p23456,
                                       multilevel_anchors)

        # Multi-Level RPN Proposals
        rpn_outputs = [
            rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL,
                     len(cfg.RPN.ANCHOR_RATIOS)) for pi in p23456
        ]
        multilevel_label_logits = [k[0] for k in rpn_outputs]
        multilevel_box_logits = [k[1] for k in rpn_outputs]

        proposal_boxes, proposal_scores = generate_fpn_proposals(
            multilevel_anchors, multilevel_label_logits, multilevel_box_logits,
            image_shape2d)

        gt_boxes, gt_labels = inputs['gt_boxes'], inputs['gt_labels']
        if is_training:
            proposals = sample_fast_rcnn_targets(proposal_boxes, gt_boxes,
                                                 gt_labels)
        else:
            proposals = BoxProposals(proposal_boxes)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
        if not cfg.FPN.CASCADE:
            roi_feature_fastrcnn = multilevel_roi_align(
                p23456[:4], proposals.boxes, 7)

            head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn)
            fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
                'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS)
            fastrcnn_head = FastRCNNHead(
                proposals, fastrcnn_box_logits, fastrcnn_label_logits,
                tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
        else:

            def roi_func(boxes):
                return multilevel_roi_align(p23456[:4], boxes, 7)

            fastrcnn_head = CascadeRCNNHead(proposals, roi_func,
                                            fastrcnn_head_func, image_shape2d,
                                            cfg.DATA.NUM_CLASS)

        if is_training:
            all_losses = []
            all_losses.extend(
                multilevel_rpn_losses(multilevel_anchors,
                                      multilevel_label_logits,
                                      multilevel_box_logits))

            all_losses.extend(fastrcnn_head.losses())

            if cfg.MODE_MASK:
                # maskrcnn loss
                roi_feature_maskrcnn = multilevel_roi_align(
                    p23456[:4],
                    proposals.fg_boxes(),
                    14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(inputs['gt_masks'], 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))

            wd_cost = regularize_cost('.*/W',
                                      l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
                                      name='wd_cost')
            all_losses.append(wd_cost)

            total_cost = tf.add_n(all_losses, 'total_cost')
            add_moving_summary(total_cost, wd_cost)
            return total_cost
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(
                    p23456[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.to_int32(final_labels) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx28x28
                tf.sigmoid(final_mask_logits, name='output/masks')
示例#2
0
    def build_graph(self, *inputs):
        inputs = dict(zip(self.input_names, inputs))
        is_training = get_current_tower_context().is_training
        image = self.preprocess(inputs['image'])  # 1CHW

        featuremap = resnet_c4_backbone(image,
                                        cfg.BACKBONE.RESNET_NUM_BLOCK[:3])
        rpn_label_logits, rpn_box_logits = rpn_head('rpn', featuremap,
                                                    cfg.RPN.HEAD_DIM,
                                                    cfg.RPN.NUM_ANCHOR)

        anchors = RPNAnchors(get_all_anchors(), inputs['anchor_labels'],
                             inputs['anchor_boxes'])
        anchors = anchors.narrow_to(featuremap)

        image_shape2d = tf.shape(image)[2:]  # h,w
        pred_boxes_decoded = anchors.decode_logits(
            rpn_box_logits)  # fHxfWxNAx4, floatbox
        proposal_boxes, proposal_scores = generate_rpn_proposals(
            tf.reshape(pred_boxes_decoded, [-1, 4]),
            tf.reshape(rpn_label_logits,
                       [-1]), image_shape2d, cfg.RPN.TRAIN_PRE_NMS_TOPK
            if is_training else cfg.RPN.TEST_PRE_NMS_TOPK,
            cfg.RPN.TRAIN_POST_NMS_TOPK
            if is_training else cfg.RPN.TEST_POST_NMS_TOPK)

        gt_boxes, gt_labels = inputs['gt_boxes'], inputs['gt_labels']
        if is_training:
            # sample proposal boxes in training
            proposals = sample_fast_rcnn_targets(proposal_boxes, gt_boxes,
                                                 gt_labels)
        else:
            # The boxes to be used to crop RoIs.
            # Use all proposal boxes in inference
            proposals = BoxProposals(proposal_boxes)

        boxes_on_featuremap = proposals.boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE)
        roi_resized = roi_align(featuremap, boxes_on_featuremap, 14)

        feature_fastrcnn = resnet_conv5(
            roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCK[-1])  # nxcx7x7
        # Keep C5 feature to be shared with mask branch
        feature_gap = GlobalAvgPooling('gap',
                                       feature_fastrcnn,
                                       data_format='channels_first')
        fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
            'fastrcnn', feature_gap, cfg.DATA.NUM_CLASS)

        fastrcnn_head = FastRCNNHead(
            proposals, fastrcnn_box_logits, fastrcnn_label_logits,
            tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))

        if is_training:
            all_losses = []
            # rpn loss
            all_losses.extend(
                rpn_losses(anchors.gt_labels, anchors.encoded_gt_boxes(),
                           rpn_label_logits, rpn_box_logits))

            # fastrcnn loss
            all_losses.extend(fastrcnn_head.losses())

            if cfg.MODE_MASK:
                # maskrcnn loss
                # In training, mask branch shares the same C5 feature.
                fg_feature = tf.gather(feature_fastrcnn, proposals.fg_inds())
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY,
                    num_convs=0)  # #fg x #cat x 14x14

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(inputs['gt_masks'], 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    14,
                    pad_border=False)  # nfg x 1x14x14
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))

            wd_cost = regularize_cost('.*/W',
                                      l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
                                      name='wd_cost')
            all_losses.append(wd_cost)

            total_cost = tf.add_n(all_losses, 'total_cost')
            add_moving_summary(total_cost, wd_cost)
            return total_cost
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')

            if cfg.MODE_MASK:
                roi_resized = roi_align(
                    featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE),
                    14)
                feature_maskrcnn = resnet_conv5(
                    roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCK[-1])
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY,
                    0)  # #result x #cat x 14x14
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.to_int32(final_labels) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx14x14
                tf.sigmoid(final_mask_logits, name='output/masks')