示例#1
0
def main():
    """
        The main function
        
    """
    '''
    database = input("Enter the name of  database: ")
    user = input("Enter your Username: "******"Enter the password: "******"Enter the host name where PostgreSQL database is install: ")
    port = input("Enter the port: ")

    Data = date_import(database, user, password, host, port)
    '''
    Data = pd.read_csv("Data.csv")
    # create anomalies
    percent = 10  # percentage of anomalies in the data
    Data, true_data, anom_patients = generator(Data, percent)

    # calculate distances
    Mahaldist, Eucliddist, Cosinedist = calculate_dist(Data)

    # detection of anomalies
    (euclid, mahal, cosin, macos, maeuc, eucos, maeuccos,
     outliers) = detector(Mahaldist, Eucliddist, Cosinedist)

    # quality control
    #true_data = np.zeros(len(euclid))
    max_acc, accuracy, frame_dict = quality_of_classification(
        euclid, mahal, cosin, macos, maeuc, eucos, maeuccos, true_data)

    return Data, max_acc, accuracy, frame_dict, outliers, anom_patients
def xml2json(file_name):
    # total_member, ref, nvd, non_nvd = 0, 0, 0, 0
    with open('/home/wenbing/Desktop/Don_NTU/CNVD_dataset/'+file_name, 'r', encoding='UTF-8') as f:
        xmlString = f.read()
    jsonString = json.dumps(xmltodict.parse(xmlString),ensure_ascii=False, indent=4)
    output = json.loads(jsonString)
    member = output['vulnerabilitys']['vulnerability']
    for _ in member:
        # total_member = total_member +1
        if 'referenceLink' in _:
            url = _['referenceLink']
            print("链接:", url)
            print(detector(url))
示例#3
0
    #reading the current frame
    ret, captured_frame = capture.read()

    #break the loop if no input is received
    if captured_frame is None:
        break

    #resizing the frame received
    captured_frame = cv2.resize(captured_frame, (imageSize))

    #applying background subtraction method to get foreground mask
    fg_mask = bg_sub.apply(captured_frame)

    #creating an instance of detector object
    DetectorObject = detector(fg_mask, minimumDetectionArea, image_no,
                              captured_frame)

    # Obtain measurements
    centers, coordinates = DetectorObject.detect()

    # Draws boxes where object detected, if no measurements, do nothing
    try:
        DetectorObject.draw_rectangles(coordinates, (0, 0, 0))
    except:
        pass

    cv2.imshow('Detection on the Original Image', captured_frame)
    cv2.imshow('Detected Background After Filtering', fg_mask)

    # Write images into desired folder
    # cv2.imwrite(f'pics\org_box\{image_no}.jpg', captured_frame)