示例#1
0
def create_loader_and_network(sample_data, name):
    roidb = get_roidb_sample_data(sample_data)
    loader = RoIDataLoader(roidb)
    net = get_net(loader, 'dequeue_net_train')
    loader.register_sigint_handler()
    loader.start(prefill=False)
    return loader, net
示例#2
0
def create_loader_and_network(sample_data, name):
    roidb = get_roidb_sample_data(sample_data)
    loader = RoIDataLoader(roidb)
    net = get_net(loader, 'dequeue_net_train')
    loader.register_sigint_handler()
    loader.start(prefill=False)
    return loader, net
def main(opts):
    logger = logging.getLogger(__name__)
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
    logger.info('{:d} roidb entries'.format(len(roidb)))
    roi_data_loader = RoIDataLoader(
        roidb,
        num_loaders=cfg.DATA_LOADER.NUM_THREADS,
        minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
        blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
    )
    blob_names = roi_data_loader.get_output_names()

    net = core.Net('dequeue_net')
    net.type = 'dag'
    all_blobs = []
    for gpu_id in range(cfg.NUM_GPUS):
        with core.NameScope('gpu_{}'.format(gpu_id)):
            with core.DeviceScope(muji.OnGPU(gpu_id)):
                for blob_name in blob_names:
                    blob = core.ScopedName(blob_name)
                    all_blobs.append(blob)
                    workspace.CreateBlob(blob)
                    logger.info('Creating blob: {}'.format(blob))
                net.DequeueBlobs(
                    roi_data_loader._blobs_queue_name, blob_names)
    logger.info("Protobuf:\n" + str(net.Proto()))

    if opts.profiler:
        import cProfile
        cProfile.runctx(
            'loader_loop(roi_data_loader)', globals(), locals(),
            sort='cumulative')
    else:
        loader_loop(roi_data_loader)

    roi_data_loader.register_sigint_handler()
    roi_data_loader.start(prefill=True)
    total_time = 0
    for i in range(opts.num_batches):
        start_t = time.time()
        for _ in range(opts.x_factor):
            workspace.RunNetOnce(net)
        total_time += (time.time() - start_t) / opts.x_factor
        logger.info(
            '{:d}/{:d}: Averge dequeue time: {:.3f}s  [{:d}/{:d}]'.format(
                i + 1, opts.num_batches, total_time / (i + 1),
                roi_data_loader._minibatch_queue.qsize(),
                cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE
            )
        )
        # Sleep to simulate the time taken by running a little network
        time.sleep(opts.sleep_time)
        # To inspect:
        # blobs = workspace.FetchBlobs(all_blobs)
        # from IPython import embed; embed()
    logger.info('Shutting down data loader...')
    roi_data_loader.shutdown()
def main(opts):
    logger = logging.getLogger(__name__)
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
    logger.info('{:d} roidb entries'.format(len(roidb)))
    roi_data_loader = RoIDataLoader(
        roidb,
        num_loaders=cfg.DATA_LOADER.NUM_THREADS,
        minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
        blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
    )
    blob_names = roi_data_loader.get_output_names()

    net = core.Net('dequeue_net')
    net.type = 'dag'
    all_blobs = []
    for gpu_id in range(cfg.NUM_GPUS):
        with core.NameScope('gpu_{}'.format(gpu_id)):
            with core.DeviceScope(muji.OnGPU(gpu_id)):
                for blob_name in blob_names:
                    blob = core.ScopedName(blob_name)
                    all_blobs.append(blob)
                    workspace.CreateBlob(blob)
                    logger.info('Creating blob: {}'.format(blob))
                net.DequeueBlobs(
                    roi_data_loader._blobs_queue_name, blob_names)
    logger.info("Protobuf:\n" + str(net.Proto()))

    if opts.profiler:
        import cProfile
        cProfile.runctx(
            'loader_loop(roi_data_loader)', globals(), locals(),
            sort='cumulative')
    else:
        loader_loop(roi_data_loader)

    roi_data_loader.register_sigint_handler()
    roi_data_loader.start(prefill=True)
    total_time = 0
    for i in range(opts.num_batches):
        start_t = time.time()
        for _ in range(opts.x_factor):
            workspace.RunNetOnce(net)
        total_time += (time.time() - start_t) / opts.x_factor
        logger.info(
            '{:d}/{:d}: Averge dequeue time: {:.3f}s  [{:d}/{:d}]'.format(
                i + 1, opts.num_batches, total_time / (i + 1),
                roi_data_loader._minibatch_queue.qsize(),
                cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE
            )
        )
        # Sleep to simulate the time taken by running a little network
        time.sleep(opts.sleep_time)
        # To inspect:
        # blobs = workspace.FetchBlobs(all_blobs)
        # from IPython import embed; embed()
    logger.info('Shutting down data loader...')
    roi_data_loader.shutdown()