def build_trident_resnet_backbone(cfg, input_shape):
    """
    Create a ResNet instance from config for TridentNet.

    Returns:
        ResNet: a :class:`ResNet` instance.
    """
    # need registration of new blocks/stems?
    norm = cfg.MODEL.RESNETS.NORM
    stem = BasicStem(
        in_channels=input_shape.channels,
        out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
        norm=norm,
    )
    freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT

    if freeze_at >= 1:
        for p in stem.parameters():
            p.requires_grad = False
        stem = FrozenBatchNorm2d.convert_frozen_batchnorm(stem)

    # fmt: off
    out_features = cfg.MODEL.RESNETS.OUT_FEATURES
    depth = cfg.MODEL.RESNETS.DEPTH
    num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
    width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
    bottleneck_channels = num_groups * width_per_group
    in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
    out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
    stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
    res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
    deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
    deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED
    deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
    num_branch = cfg.MODEL.TRIDENT.NUM_BRANCH
    branch_dilations = cfg.MODEL.TRIDENT.BRANCH_DILATIONS
    trident_stage = cfg.MODEL.TRIDENT.TRIDENT_STAGE
    test_branch_idx = cfg.MODEL.TRIDENT.TEST_BRANCH_IDX
    # fmt: on
    assert res5_dilation in {
        1, 2
    }, "res5_dilation cannot be {}.".format(res5_dilation)

    num_blocks_per_stage = {
        50: [3, 4, 6, 3],
        101: [3, 4, 23, 3],
        152: [3, 8, 36, 3]
    }[depth]

    stages = []

    res_stage_idx = {"res2": 2, "res3": 3, "res4": 4, "res5": 5}
    out_stage_idx = [res_stage_idx[f] for f in out_features]
    trident_stage_idx = res_stage_idx[trident_stage]
    max_stage_idx = max(out_stage_idx)
    for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
        dilation = res5_dilation if stage_idx == 5 else 1
        first_stride = 1 if idx == 0 or (stage_idx == 5
                                         and dilation == 2) else 2
        stage_kargs = {
            "num_blocks": num_blocks_per_stage[idx],
            "first_stride": first_stride,
            "in_channels": in_channels,
            "bottleneck_channels": bottleneck_channels,
            "out_channels": out_channels,
            "num_groups": num_groups,
            "norm": norm,
            "stride_in_1x1": stride_in_1x1,
            "dilation": dilation,
        }
        if stage_idx == trident_stage_idx:
            assert not deform_on_per_stage[
                idx], "Not support deformable conv in Trident blocks yet."
            stage_kargs["block_class"] = TridentBottleneckBlock
            stage_kargs["num_branch"] = num_branch
            stage_kargs["dilations"] = branch_dilations
            stage_kargs["test_branch_idx"] = test_branch_idx
            stage_kargs.pop("dilation")
        elif deform_on_per_stage[idx]:
            stage_kargs["block_class"] = DeformBottleneckBlock
            stage_kargs["deform_modulated"] = deform_modulated
            stage_kargs["deform_num_groups"] = deform_num_groups
        else:
            stage_kargs["block_class"] = BottleneckBlock
        blocks = (make_trident_stage(**stage_kargs) if stage_idx
                  == trident_stage_idx else make_stage(**stage_kargs))
        in_channels = out_channels
        out_channels *= 2
        bottleneck_channels *= 2

        if freeze_at >= stage_idx:
            for block in blocks:
                block.freeze()
        stages.append(blocks)
    return ResNet(stem, stages, out_features=out_features)
示例#2
0
def build_deformnet_backbone_pretrain(cfg, input_channels, num_classes):
    """
    Create a ResNet instance from config.

    Returns:
        ResNet: a :class:`ResNet` instance.
    """
    # need registration of new blocks/stems?
    norm = cfg.MODEL.RESNETS.NORM
    stem = BasicStem(
        in_channels=input_channels,
        out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
        norm=norm,
    )
    freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT

    if freeze_at >= 1:
        for p in stem.parameters():
            p.requires_grad = False
        stem = FrozenBatchNorm2d.convert_frozen_batchnorm(stem)

    # fmt: off
    out_features        = cfg.MODEL.RESNETS.OUT_FEATURES
    depth               = cfg.MODEL.RESNETS.DEPTH
    num_groups          = cfg.MODEL.RESNETS.NUM_GROUPS
    width_per_group     = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
    bottleneck_channels = num_groups * width_per_group
    in_channels         = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
    out_channels        = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
    stride_in_1x1       = cfg.MODEL.RESNETS.STRIDE_IN_1X1
    res5_dilation       = cfg.MODEL.RESNETS.RES5_DILATION
    deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
    deform_modulated    = cfg.MODEL.RESNETS.DEFORM_MODULATED
    deform_num_groups   = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
    # fmt: on
    assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)

    num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]

    stages = []

    # Avoid creating variables without gradients
    # It consumes extra memory and may cause allreduce to fail
    out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
    max_stage_idx = max(out_stage_idx)
    for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
        dilation = res5_dilation if stage_idx == 5 else 1
        first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
        stage_kargs = {
            "num_blocks": num_blocks_per_stage[idx],
            "first_stride": first_stride,
            "in_channels": in_channels,
            "bottleneck_channels": bottleneck_channels,
            "out_channels": out_channels,
            "num_groups": num_groups,
            "norm": norm,
            "stride_in_1x1": stride_in_1x1,
            "dilation": dilation,
        }
        if deform_on_per_stage[idx]:
            stage_kargs["block_class"] = DeformBottleneckBlock
            stage_kargs["deform_modulated"] = deform_modulated
            stage_kargs["deform_num_groups"] = deform_num_groups
        else:
            stage_kargs["block_class"] = BottleneckBlock
        blocks = make_stage(**stage_kargs)
        in_channels = out_channels
        out_channels *= 2
        bottleneck_channels *= 2

        if freeze_at >= stage_idx:
            for block in blocks:
                block.freeze()
        stages.append(blocks)
    return RearrNet(stem, stages, num_classes=num_classes, out_features=out_features)
def build_deepent_fused_resnet_backbone(cfg, input_shape):
    """
    Create a ResNet instance from config.

    Returns:
        ResNet: a :class:`ResNet` instance.
    """
    # need registration of new blocks/stems?
    norm = cfg.MODEL.RESNETS.NORM

    assert input_shape.channels == 4, f'{input_shape.channels} input channels specified, should be 4'
    depth_shape = input_shape._replace(channels=1)
    input_shape = input_shape._replace(channels=3)
    depth_encoder = build_depth_encoder_backbone(cfg, depth_shape)

    stem = BasicStem(
        in_channels=input_shape.channels,
        out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
        norm=norm,
    )
    freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT

    if freeze_at >= 1:
        for p in stem.parameters():
            p.requires_grad = False
        stem = FrozenBatchNorm2d.convert_frozen_batchnorm(stem)

    # fmt: off
    in_features = cfg.MODEL.RESNETS.IN_FEATURES
    fuse_method = cfg.MODEL.RESNETS.FUSE_METHOD
    out_features = cfg.MODEL.RESNETS.OUT_FEATURES
    depth = cfg.MODEL.RESNETS.DEPTH
    num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
    width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
    bottleneck_channels = num_groups * width_per_group
    in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
    out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
    stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
    res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
    # fmt: on
    assert res5_dilation in {
        1, 2
    }, "res5_dilation cannot be {}.".format(res5_dilation)

    num_blocks_per_stage = {
        50: [3, 4, 6, 3],
        101: [3, 4, 23, 3],
        152: [3, 8, 36, 3]
    }[depth]

    stages = []

    # Avoid creating variables without gradients
    # It consumes extra memory and may cause allreduce to fail
    out_stage_idx = [{
        "res2": 2,
        "res3": 3,
        "res4": 4,
        "res5": 5
    }[f] for f in out_features]
    max_stage_idx = max(out_stage_idx)
    for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
        dilation = res5_dilation if stage_idx == 5 else 1
        first_stride = 1 if idx == 0 or (stage_idx == 5
                                         and dilation == 2) else 2
        stage_kargs = {
            "num_blocks": num_blocks_per_stage[idx],
            "first_stride": first_stride,
            "in_channels": in_channels,
            "bottleneck_channels": bottleneck_channels,
            "out_channels": out_channels,
            "num_groups": num_groups,
            "norm": norm,
            "stride_in_1x1": stride_in_1x1,
            "dilation": dilation,
            "block_class": BottleneckBlock
        }
        blocks = make_stage(**stage_kargs)
        in_channels = out_channels
        out_channels *= 2
        bottleneck_channels *= 2

        if freeze_at >= stage_idx:
            for block in blocks:
                block.freeze()
        stages.append(blocks)

    return FusedResNet(stem,
                       stages,
                       depth_encoder=depth_encoder,
                       in_features=in_features,
                       out_features=out_features,
                       fuse_method=fuse_method)