示例#1
0
def main(argv):
  del argv  # unused arg
  tf.io.gfile.makedirs(FLAGS.output_dir)
  logging.info('Saving checkpoints at %s', FLAGS.output_dir)
  tf.random.set_seed(FLAGS.seed)

  if FLAGS.use_gpu:
    logging.info('Use GPU')
    strategy = tf.distribute.MirroredStrategy()
  else:
    logging.info('Use TPU at %s',
                 FLAGS.tpu if FLAGS.tpu is not None else 'local')
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu)
    tf.config.experimental_connect_to_cluster(resolver)
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.TPUStrategy(resolver)

  batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
  train_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
      split='train',
      data_dir=FLAGS.data_dir,
      data_mode='ind')
  ind_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
      split='test',
      data_dir=FLAGS.data_dir,
      data_mode='ind')
  ood_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
      split='test',
      data_dir=FLAGS.data_dir,
      data_mode='ood')
  all_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
      split='test',
      data_dir=FLAGS.data_dir,
      data_mode='all')

  dataset_builders = {
      'clean': ind_dataset_builder,
      'ood': ood_dataset_builder,
      'all': all_dataset_builder
  }

  train_dataset = train_dataset_builder.load(
      batch_size=FLAGS.per_core_batch_size)

  ds_info = train_dataset_builder.tfds_info
  feature_size = ds_info.metadata['feature_size']
  # num_classes is number of valid intents plus out-of-scope intent
  num_classes = ds_info.features['intent_label'].num_classes + 1
  # vocab_size is total number of valid tokens plus the out-of-vocabulary token.
  vocab_size = ind_dataset_builder.tokenizer.num_words + 1

  steps_per_epoch = train_dataset_builder.num_examples // batch_size

  test_datasets = {}
  steps_per_eval = {}
  for dataset_name, dataset_builder in dataset_builders.items():
    test_datasets[dataset_name] = dataset_builder.load(
        batch_size=FLAGS.eval_batch_size)
    steps_per_eval[dataset_name] = (
        dataset_builder.num_examples // FLAGS.eval_batch_size)

  if FLAGS.use_bfloat16:
    tf.keras.mixed_precision.set_global_policy('mixed_bfloat16')

  summary_writer = tf.summary.create_file_writer(
      os.path.join(FLAGS.output_dir, 'summaries'))

  premade_embedding_array = None
  if FLAGS.word_embedding_dir:
    with tf.io.gfile.GFile(FLAGS.word_embedding_dir, 'rb') as embedding_file:
      premade_embedding_array = np.load(embedding_file)

  with strategy.scope():
    logging.info('Building %s model', FLAGS.model_family)
    if FLAGS.model_family.lower() == 'textcnn':
      model = cnn_model.textcnn(
          filter_sizes=[int(x) for x in FLAGS.filter_sizes],
          num_filters=FLAGS.num_filters,
          num_classes=num_classes,
          feature_size=feature_size,
          vocab_size=vocab_size,
          embed_size=FLAGS.embedding_size,
          dropout_rate=FLAGS.dropout_rate,
          l2=FLAGS.l2,
          premade_embedding_arr=premade_embedding_array)
      optimizer = tf.keras.optimizers.Adam(
          FLAGS.base_learning_rate, beta_1=1.0 - FLAGS.one_minus_momentum)
    elif FLAGS.model_family.lower() == 'bert':
      bert_config_dir, bert_ckpt_dir = resolve_bert_ckpt_and_config_dir(
          FLAGS.bert_dir, FLAGS.bert_config_dir, FLAGS.bert_ckpt_dir)
      bert_config = bert_utils.create_config(bert_config_dir)
      model, bert_encoder = ub.models.bert_model(
          num_classes=num_classes,
          max_seq_length=feature_size,
          bert_config=bert_config)
      # Create an AdamW optimizer with beta_2=0.999, epsilon=1e-6.
      optimizer = bert_utils.create_optimizer(
          FLAGS.base_learning_rate,
          steps_per_epoch=steps_per_epoch,
          epochs=FLAGS.train_epochs,
          warmup_proportion=FLAGS.warmup_proportion,
          beta_1=1.0 - FLAGS.one_minus_momentum)
    else:
      raise ValueError('model_family ({}) can only be TextCNN or BERT.'.format(
          FLAGS.model_family))

    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())

    metrics = {
        'train/negative_log_likelihood': tf.keras.metrics.Mean(),
        'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'train/loss': tf.keras.metrics.Mean(),
        'train/ece': rm.metrics.ExpectedCalibrationError(
            num_bins=FLAGS.num_bins),
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece': rm.metrics.ExpectedCalibrationError(
            num_bins=FLAGS.num_bins),
    }

    for dataset_name, test_dataset in test_datasets.items():
      if dataset_name != 'clean':
        metrics.update({
            'test/nll_{}'.format(dataset_name):
                tf.keras.metrics.Mean(),
            'test/accuracy_{}'.format(dataset_name):
                tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece_{}'.format(dataset_name):
                rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins)
        })

    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
    initial_epoch = 0
    if latest_checkpoint:
      # checkpoint.restore must be within a strategy.scope() so that optimizer
      # slot variables are mirrored.
      checkpoint.restore(latest_checkpoint)
      logging.info('Loaded checkpoint %s', latest_checkpoint)
      initial_epoch = optimizer.iterations.numpy() // steps_per_epoch
    elif FLAGS.model_family.lower() == 'bert':
      # load BERT from initial checkpoint
      bert_checkpoint = tf.train.Checkpoint(model=bert_encoder)
      bert_checkpoint.restore(
          bert_ckpt_dir).assert_existing_objects_matched()
      logging.info('Loaded BERT checkpoint %s', bert_ckpt_dir)

  # Finally, define OOD metrics outside the accelerator scope for CPU eval.
  metrics.update({'test/auroc_all': tf.keras.metrics.AUC(curve='ROC'),
                  'test/auprc_all': tf.keras.metrics.AUC(curve='PR')})

  @tf.function
  def train_step(iterator):
    """Training StepFn."""

    def step_fn(inputs):
      """Per-Replica StepFn."""
      features, labels = create_feature_and_label(
          inputs, feature_size, model_family=FLAGS.model_family)

      with tf.GradientTape() as tape:
        # Set learning phase to enable dropout etc during training.
        logits = model(features, training=True)
        if FLAGS.use_bfloat16:
          logits = tf.cast(logits, tf.float32)
        negative_log_likelihood = tf.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(
                labels, logits, from_logits=True))
        l2_loss = sum(model.losses)
        loss = negative_log_likelihood + l2_loss
        # Scale the loss given the TPUStrategy will reduce sum all gradients.
        scaled_loss = loss / strategy.num_replicas_in_sync

      grads = tape.gradient(scaled_loss, model.trainable_variables)
      optimizer.apply_gradients(zip(grads, model.trainable_variables))

      probs = tf.nn.softmax(logits)
      metrics['train/ece'].add_batch(probs, label=labels)
      metrics['train/loss'].update_state(loss)
      metrics['train/negative_log_likelihood'].update_state(
          negative_log_likelihood)
      metrics['train/accuracy'].update_state(labels, logits)

    for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)):
      strategy.run(step_fn, args=(next(iterator),))

  @tf.function
  def test_step(iterator, dataset_name, num_steps):
    """Evaluation StepFn."""

    def step_fn(inputs):
      """Per-Replica StepFn."""
      features, labels = create_feature_and_label(
          inputs, feature_size, model_family=FLAGS.model_family)

      # Set learning phase to disable dropout etc during eval.
      logits = model(features, training=False)
      if FLAGS.use_bfloat16:
        logits = tf.cast(logits, tf.float32)
      probs = tf.nn.softmax(logits)
      negative_log_likelihood = tf.reduce_mean(
          tf.keras.losses.sparse_categorical_crossentropy(labels, probs))

      if dataset_name == 'clean':
        metrics['test/negative_log_likelihood'].update_state(
            negative_log_likelihood)
        metrics['test/accuracy'].update_state(labels, probs)
        metrics['test/ece'].add_batch(probs, label=labels)
      else:
        metrics['test/nll_{}'.format(dataset_name)].update_state(
            negative_log_likelihood)
        metrics['test/accuracy_{}'.format(dataset_name)].update_state(
            labels, probs)
        metrics['test/ece_{}'.format(dataset_name)].add_batch(
            probs, label=labels)

      if dataset_name == 'all':
        ood_labels = tf.cast(labels == 150, labels.dtype)
        ood_probs = 1. - tf.reduce_max(probs, axis=-1)
        metrics['test/auroc_{}'.format(dataset_name)].update_state(
            ood_labels, ood_probs)
        metrics['test/auprc_{}'.format(dataset_name)].update_state(
            ood_labels, ood_probs)

    for _ in tf.range(tf.cast(num_steps, tf.int32)):
      step_fn(next(iterator))

  train_iterator = iter(train_dataset)
  start_time = time.time()
  for epoch in range(initial_epoch, FLAGS.train_epochs):
    logging.info('Starting to run epoch: %s', epoch)
    train_step(train_iterator)

    current_step = (epoch + 1) * steps_per_epoch
    max_steps = steps_per_epoch * FLAGS.train_epochs
    time_elapsed = time.time() - start_time
    steps_per_sec = float(current_step) / time_elapsed
    eta_seconds = (max_steps - current_step) / steps_per_sec
    message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
               'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                   current_step / max_steps, epoch + 1, FLAGS.train_epochs,
                   steps_per_sec, eta_seconds / 60, time_elapsed / 60))
    logging.info(message)

    if epoch % FLAGS.evaluation_interval == 0:
      for dataset_name, test_dataset in test_datasets.items():
        test_iterator = iter(test_dataset)
        logging.info('Testing on dataset %s', dataset_name)
        logging.info('Starting to run eval at epoch: %s', epoch)
        test_step(test_iterator, dataset_name, steps_per_eval[dataset_name])
        logging.info('Done with testing on %s', dataset_name)

      logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                   metrics['train/loss'].result(),
                   metrics['train/accuracy'].result() * 100)
      logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                   metrics['test/negative_log_likelihood'].result(),
                   metrics['test/accuracy'].result() * 100)
      total_results = {
          name: metric.result() for name, metric in metrics.items()
      }
      # Metrics from Robustness Metrics (like ECE) will return a dict with a
      # single key/value, instead of a scalar.
      total_results = {
          k: (list(v.values())[0] if isinstance(v, dict) else v)
          for k, v in total_results.items()
      }
      with summary_writer.as_default():
        for name, result in total_results.items():
          tf.summary.scalar(name, result, step=epoch + 1)

    for metric in metrics.values():
      metric.reset_states()

    if (FLAGS.checkpoint_interval > 0 and
        (epoch + 1) % FLAGS.checkpoint_interval == 0):
      checkpoint_name = checkpoint.save(
          os.path.join(FLAGS.output_dir, 'checkpoint'))
      logging.info('Saved checkpoint to %s', checkpoint_name)
  with summary_writer.as_default():
    hp.hparams({
        'base_learning_rate': FLAGS.base_learning_rate,
        'one_minus_momentum': FLAGS.one_minus_momentum,
        'l2': FLAGS.l2,
    })
示例#2
0
def main(argv):
    del argv  # unused arg
    if not FLAGS.use_gpu:
        raise ValueError('Only GPU is currently supported.')
    if FLAGS.num_cores > 1:
        raise ValueError('Only a single accelerator is currently supported.')
    tf.random.set_seed(FLAGS.seed)
    tf.io.gfile.makedirs(FLAGS.output_dir)

    ind_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
        batch_size=FLAGS.per_core_batch_size,
        eval_batch_size=FLAGS.per_core_batch_size,
        data_dir=FLAGS.data_dir,
        data_mode='ind')
    ood_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
        batch_size=FLAGS.per_core_batch_size,
        eval_batch_size=FLAGS.per_core_batch_size,
        data_dir=FLAGS.data_dir,
        data_mode='ood')
    all_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
        batch_size=FLAGS.per_core_batch_size,
        eval_batch_size=FLAGS.per_core_batch_size,
        data_dir=FLAGS.data_dir,
        data_mode='all')

    dataset_builders = {
        'clean': ind_dataset_builder,
        'ood': ood_dataset_builder,
        'all': all_dataset_builder
    }

    ds_info = ind_dataset_builder.info
    feature_size = ds_info['feature_size']
    # num_classes is number of valid intents plus out-of-scope intent
    num_classes = ds_info['num_classes'] + 1
    # vocab_size is total number of valid tokens plus the out-of-vocabulary token.
    vocab_size = ind_dataset_builder.tokenizer.num_words + 1

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores

    test_datasets = {}
    steps_per_eval = {}
    for dataset_name, dataset_builder in dataset_builders.items():
        test_datasets[dataset_name] = dataset_builder.build(
            split=ub.datasets.base.Split.TEST)
        steps_per_eval[dataset_name] = (
            dataset_builder.info['num_test_examples'] // batch_size)

    if FLAGS.model_family.lower() == 'textcnn':
        model = cnn_model.textcnn(filter_sizes=FLAGS.filter_sizes,
                                  num_filters=FLAGS.num_filters,
                                  num_classes=num_classes,
                                  feature_size=feature_size,
                                  vocab_size=vocab_size,
                                  embed_size=FLAGS.embedding_size,
                                  dropout_rate=FLAGS.dropout_rate,
                                  l2=FLAGS.l2)
    elif FLAGS.model_family.lower() == 'bert':
        bert_config_dir, _ = deterministic.resolve_bert_ckpt_and_config_dir(
            FLAGS.bert_dir, FLAGS.bert_config_dir, FLAGS.bert_ckpt_dir)
        bert_config = bert_utils.create_config(bert_config_dir)
        model, _ = ub.models.BertBuilder(num_classes=num_classes,
                                         max_seq_length=feature_size,
                                         bert_config=bert_config)
    else:
        raise ValueError(
            'model_family ({}) can only be TextCNN or BERT.'.format(
                FLAGS.model_family))

    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())

    # Search for checkpoints from their index file; then remove the index suffix.
    ensemble_filenames = tf.io.gfile.glob(
        os.path.join(FLAGS.checkpoint_dir, '**/*.index'))
    ensemble_filenames = [filename[:-6] for filename in ensemble_filenames]
    ensemble_size = len(ensemble_filenames)
    logging.info('Ensemble size: %s', ensemble_size)
    logging.info('Ensemble number of weights: %s',
                 ensemble_size * model.count_params())
    logging.info('Ensemble filenames: %s', str(ensemble_filenames))
    checkpoint = tf.train.Checkpoint(model=model)

    # Write model predictions to files.
    num_datasets = len(test_datasets)
    for m, ensemble_filename in enumerate(ensemble_filenames):
        checkpoint.restore(ensemble_filename)
        for n, (name, test_dataset) in enumerate(test_datasets.items()):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            if not tf.io.gfile.exists(filename):
                logits = []
                test_iterator = iter(test_dataset)
                for _ in range(steps_per_eval[name]):
                    inputs = next(test_iterator)
                    features, _ = deterministic.create_feature_and_label(
                        inputs, feature_size, model_family=FLAGS.model_family)
                    logits.append(model(features, training=False))

                logits = tf.concat(logits, axis=0)
                with tf.io.gfile.GFile(filename, 'w') as f:
                    np.save(f, logits.numpy())
            percent = (m * num_datasets +
                       (n + 1)) / (ensemble_size * num_datasets)
            message = (
                '{:.1%} completion for prediction: ensemble member {:d}/{:d}. '
                'Dataset {:d}/{:d}'.format(percent, m + 1, ensemble_size,
                                           n + 1, num_datasets))
            logging.info(message)

    metrics = {
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/gibbs_cross_entropy': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
    }

    for dataset_name, test_dataset in test_datasets.items():
        if dataset_name != 'clean':
            metrics.update({
                'test/nll_{}'.format(dataset_name):
                tf.keras.metrics.Mean(),
                'test/accuracy_{}'.format(dataset_name):
                tf.keras.metrics.SparseCategoricalAccuracy(),
                'test/ece_{}'.format(dataset_name):
                um.ExpectedCalibrationError(num_bins=FLAGS.num_bins)
            })

    # Finally, define OOD metrics for the combined IND and OOD dataset.
    metrics.update({
        'test/auroc_all': tf.keras.metrics.AUC(curve='ROC'),
        'test/auprc_all': tf.keras.metrics.AUC(curve='PR')
    })

    # Evaluate model predictions.
    for n, (name, test_dataset) in enumerate(test_datasets.items()):
        logits_dataset = []
        for m in range(ensemble_size):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            with tf.io.gfile.GFile(filename, 'rb') as f:
                logits_dataset.append(np.load(f))

        logits_dataset = tf.convert_to_tensor(logits_dataset)
        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval[name]):
            inputs = next(test_iterator)
            _, labels = deterministic.create_feature_and_label(
                inputs, feature_size, model_family=FLAGS.model_family)
            logits = logits_dataset[:, (step * batch_size):((step + 1) *
                                                            batch_size)]
            labels = tf.cast(labels, tf.int32)
            negative_log_likelihood = um.ensemble_cross_entropy(labels, logits)
            per_probs = tf.nn.softmax(logits)
            probs = tf.reduce_mean(per_probs, axis=0)
            if name == 'clean':
                gibbs_ce = um.gibbs_cross_entropy(labels, logits)
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/gibbs_cross_entropy'].update_state(gibbs_ce)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                metrics['test/nll_{}'.format(name)].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy_{}'.format(name)].update_state(
                    labels, probs)
                metrics['test/ece_{}'.format(name)].update_state(labels, probs)

            if dataset_name == 'all':
                ood_labels = tf.cast(labels == 150, labels.dtype)
                ood_probs = 1. - tf.reduce_max(probs, axis=-1)
                metrics['test/auroc_{}'.format(dataset_name)].update_state(
                    ood_labels, ood_probs)
                metrics['test/auprc_{}'.format(dataset_name)].update_state(
                    ood_labels, ood_probs)

        message = (
            '{:.1%} completion for evaluation: dataset {:d}/{:d}'.format(
                (n + 1) / num_datasets, n + 1, num_datasets))
        logging.info(message)

    total_results = {name: metric.result() for name, metric in metrics.items()}
    logging.info('Metrics: %s', total_results)