示例#1
0
    def _specialize_clusters(cls, clusters, **kwargs):
        options = kwargs['options']
        platform = kwargs['platform']
        sregistry = kwargs['sregistry']

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = fuse(clusters, toposort=True)

        # Hoist and optimize Dimension-invariant sub-expressions
        clusters = cire(clusters, 'invariants', sregistry, options, platform)
        clusters = Lift().process(clusters)

        # Reduce flops (potential arithmetic alterations)
        clusters = extract_increments(clusters, sregistry)
        clusters = cire(clusters, 'sops', sregistry, options, platform)
        clusters = factorize(clusters)
        clusters = optimize_pows(clusters)

        # The previous passes may have created fusion opportunities, which in
        # turn may enable further optimizations
        clusters = fuse(clusters)
        clusters = eliminate_arrays(clusters)

        # Reduce flops (no arithmetic alterations)
        clusters = cse(clusters, sregistry)

        # Blocking to improve data locality
        clusters = Blocking(options).process(clusters)

        return clusters
示例#2
0
    def _specialize_clusters(cls, clusters, **kwargs):
        options = kwargs['options']
        platform = kwargs['platform']

        # To create temporaries
        counter = generator()
        template = lambda: "r%d" % counter()

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = fuse(clusters, toposort=True)

        # Hoist and optimize Dimension-invariant sub-expressions
        clusters = cire(clusters, template, 'invariants', options, platform)
        clusters = Lift().process(clusters)

        # Reduce flops (potential arithmetic alterations)
        clusters = extract_increments(clusters, template)
        clusters = cire(clusters, template, 'sops', options, platform)
        clusters = factorize(clusters)
        clusters = optimize_pows(clusters)

        # Reduce flops (no arithmetic alterations)
        clusters = cse(clusters, template)

        # Lifting may create fusion opportunities, which in turn may enable
        # further optimizations
        clusters = fuse(clusters)
        clusters = eliminate_arrays(clusters, template)

        return clusters
示例#3
0
    def _pipeline(self, clusters, *args):
        clusters = extract_time_invariants(clusters, *args)
        clusters = cire(clusters, *args)
        clusters = cse(clusters, *args)
        clusters = factorize(clusters)

        return clusters
示例#4
0
    def _specialize_clusters(cls, clusters, **kwargs):
        options = kwargs['options']
        platform = kwargs['platform']
        sregistry = kwargs['sregistry']

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = fuse(clusters, toposort=True)

        # Hoist and optimize Dimension-invariant sub-expressions
        clusters = cire(clusters, 'invariants', sregistry, options, platform)
        clusters = Lift().process(clusters)

        # Reduce flops
        clusters = extract_increments(clusters, sregistry)
        clusters = cire(clusters, 'sops', sregistry, options, platform)
        clusters = factorize(clusters)
        clusters = optimize_pows(clusters)

        # The previous passes may have created fusion opportunities
        clusters = fuse(clusters)

        # Reduce flops
        clusters = cse(clusters, sregistry)

        return clusters
示例#5
0
文件: cpu.py 项目: rhodrin/devito
    def _specialize_clusters(cls, clusters, **kwargs):
        """
        Optimize Clusters for better runtime performance.
        """
        options = kwargs['options']
        platform = kwargs['platform']

        # To create temporaries
        counter = generator()
        template = lambda: "r%d" % counter()

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = Toposort().process(clusters)
        clusters = fuse(clusters)

        # Hoist and optimize Dimension-invariant sub-expressions
        clusters = cire(clusters, template, 'invariants', options, platform)
        clusters = Lift().process(clusters)

        # Blocking to improve data locality
        clusters = Blocking(options).process(clusters)

        # Reduce flops (potential arithmetic alterations)
        clusters = extract_increments(clusters, template)
        clusters = cire(clusters, template, 'sops', options, platform)
        clusters = factorize(clusters)
        clusters = optimize_pows(clusters)
        clusters = freeze(clusters)

        # Reduce flops (no arithmetic alterations)
        clusters = cse(clusters, template)

        # The previous passes may have created fusion opportunities, which in
        # turn may enable further optimizations
        clusters = fuse(clusters)
        clusters = eliminate_arrays(clusters, template)
        clusters = scalarize(clusters, template)

        return clusters
示例#6
0
    def _specialize_clusters(cls, clusters, **kwargs):
        options = kwargs['options']
        platform = kwargs['platform']
        sregistry = kwargs['sregistry']

        # Optimize MultiSubDomains
        clusters = optimize_msds(clusters)

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = fuse(clusters, toposort=True, options=options)

        # Fission to increase parallelism
        clusters = fission(clusters)

        # Hoist and optimize Dimension-invariant sub-expressions
        clusters = cire(clusters, 'invariants', sregistry, options, platform)
        clusters = Lift().process(clusters)

        # Blocking to define thread blocks
        if options['blockeager']:
            clusters = blocking(clusters, sregistry, options)

        # Reduce flops
        clusters = extract_increments(clusters, sregistry)
        clusters = cire(clusters, 'sops', sregistry, options, platform)
        clusters = factorize(clusters)
        clusters = optimize_pows(clusters)

        # The previous passes may have created fusion opportunities
        clusters = fuse(clusters)

        # Reduce flops
        clusters = cse(clusters, sregistry)

        # Blocking to define thread blocks
        if options['blocklazy']:
            clusters = blocking(clusters, sregistry, options)

        return clusters