示例#1
0
    def test_partial_offloading(self):
        """
        Check that :class:`Function` objects not using any :class:`SpaceDimension`
        are computed in Devito-land, rather than via YASK.
        """
        shape = (4, 4, 4)
        grid = Grid(shape=shape)
        dx = Dimension(name='dx')
        dy = Dimension(name='dy')
        dz = Dimension(name='dz')
        x, y, z = grid.dimensions

        u = TimeFunction(name='yu4D', grid=grid, space_order=0)
        f = Function(name='f', dimensions=(dx, dy, dz), shape=shape)

        u.data_with_halo[:] = 0.
        f.data[:] = 0.

        eqns = [Eq(u.forward, u + 1.),
                Eq(f, u[1, dx, dy, dz] + 1.)]
        op = Operator(eqns)

        op(time=0)
        assert np.all(u.data[0] == 0.)
        assert np.all(u.data[1] == 1.)
        assert np.all(f.data == 2.)
示例#2
0
def GradientOperator(model, geometry, space_order=4, save=True,
                     kernel='OT2', **kwargs):
    """
    Constructor method for the gradient operator in an acoustic media

    :param model: :class:`Model` object containing the physical parameters
    :param source: :class:`PointData` object containing the source geometry
    :param receiver: :class:`PointData` object containing the acquisition geometry
    :param time_order: Time discretization order
    :param space_order: Space discretization order
    """
    m, damp = model.m, model.damp

    # Gradient symbol and wavefield symbols
    grad = Function(name='grad', grid=model.grid)
    u = TimeFunction(name='u', grid=model.grid, save=geometry.nt if save
                     else None, time_order=2, space_order=space_order)
    v = TimeFunction(name='v', grid=model.grid, save=None,
                     time_order=2, space_order=space_order)
    rec = Receiver(name='rec', grid=model.grid, time_range=geometry.time_axis,
                   npoint=geometry.nrec)

    s = model.grid.stepping_dim.spacing
    eqn = iso_stencil(v, m, s, damp, kernel, forward=False)

    if kernel == 'OT2':
        gradient_update = Inc(grad, - u.dt2 * v)
    elif kernel == 'OT4':
        gradient_update = Inc(grad, - (u.dt2 + s**2 / 12.0 * u.laplace2(m**(-2))) * v)
    # Add expression for receiver injection
    receivers = rec.inject(field=v.backward, expr=rec * s**2 / m)

    # Substitute spacing terms to reduce flops
    return Operator(eqn + receivers + [gradient_update], subs=model.spacing_map,
                    name='Gradient', **kwargs)
示例#3
0
    def test_multiple_loop_nests(self):
        """
        Compute a simple stencil S, preceded by an "initialization loop" I and
        followed by a "random loop" R.

            * S is the trivial equation ``u[t+1,x,y,z] = u[t,x,y,z] + 1``;
            * I initializes ``u`` to 0;
            * R adds 2 to another field ``v`` along the ``z`` dimension but only
                over the planes ``[x=0, y=2]`` and ``[x=0, y=5]``.

        Out of these three loop nests, only S should be "offloaded" to YASK; indeed,
        I is outside the time loop, while R does not loop over space dimensions.
        This test checks that S is the only loop nest "offloaded" to YASK, and
        that the numerical output is correct.
        """
        grid = Grid(shape=(12, 12, 12))
        x, y, z = grid.dimensions
        t = grid.stepping_dim
        u = TimeFunction(name='yu4D', grid=grid, space_order=0)
        v = TimeFunction(name='yv4D', grid=grid, space_order=0)
        v.data[:] = 0.
        eqs = [Eq(u[0, x, y, z], 0),
               Eq(u[1, x, y, z], 0),
               Eq(u.forward, u + 1.),
               Eq(v[t + 1, 0, 2, z], v[t + 1, 0, 2, z] + 2.),
               Eq(v[t + 1, 0, 5, z], v[t + 1, 0, 5, z] + 2.)]
        op = Operator(eqs)
        op(yu4D=u, yv4D=v, time=0)
        assert 'run_solution' in str(op)
        assert len(retrieve_iteration_tree(op)) == 3
        assert np.all(u.data[0] == 0.)
        assert np.all(u.data[1] == 1.)
        assert np.all(v.data[0] == 0.)
        assert np.all(v.data[1, 0, 2] == 2.)
        assert np.all(v.data[1, 0, 5] == 2.)
示例#4
0
    def test_const_change(self):
        """
        Test that Constand.data can be set as required.
        """

        n = 5
        t = Constant(name='t', dtype=np.int32)

        grid = Grid(shape=(2, 2))
        x, y = grid.dimensions

        f = TimeFunction(name='f', grid=grid, save=n+1)
        f.data[:] = 0
        eq = Eq(f.dt-1)
        stencil = Eq(f.forward, solve(eq, f.forward))
        op = Operator([stencil])
        op.apply(time_m=0, time_M=n-1, dt=1)

        check = Function(name='check', grid=grid)
        eq_test = Eq(check, f[t, x, y])
        op_test = Operator([eq_test])
        for j in range(0, n+1):
            t.data = j  # Ensure constant is being updated correctly
            op_test.apply(t=t)
            assert(np.amax(check.data[:], axis=None) == j)
            assert(np.amin(check.data[:], axis=None) == j)
示例#5
0
 def test_no_omp_if_offloaded(self):
     grid = Grid(shape=(4, 4, 4))
     u = TimeFunction(name='yu4D', grid=grid, space_order=0)
     u.data[:] = 0.
     op = Operator(Eq(u, u + 1.))
     assert 'run_solution' in str(op)
     assert 'pragma omp' not in str(op)
示例#6
0
    def test_subsampled_fd(self):
        """
        Test that the symbolic interface is working for space subsampled
        functions.
        """
        nt = 19
        grid = Grid(shape=(12, 12), extent=(11, 11))

        u = TimeFunction(name='u', grid=grid, save=nt, space_order=2)
        assert(grid.time_dim in u.indices)

        # Creates subsampled spatial dimensions and according grid
        dims = tuple([ConditionalDimension(d.name+'sub', parent=d, factor=2)
                      for d in u.grid.dimensions])
        grid2 = Grid((6, 6), dimensions=dims)
        u2 = TimeFunction(name='u2', grid=grid2, save=nt, space_order=1)
        for i in range(nt):
            for j in range(u2.data_with_halo.shape[2]):
                u2.data_with_halo[i, :, j] = np.arange(u2.data_with_halo.shape[2])

        eqns = [Eq(u.forward, u + 1.), Eq(u2.forward, u2.dx)]
        op = Operator(eqns, dse="advanced")
        op.apply(time_M=nt-2)
        # Verify that u2[1, x,y]= du2/dx[0, x, y]

        assert np.allclose(u.data[-1], nt-1)
        assert np.allclose(u2.data[1], 0.5)
示例#7
0
def at(shape=(11, 11)):
    grid = Grid(shape=shape)
    a = TimeFunction(name='a', grid=grid)
    xarr = np.linspace(0., 1., shape[0])
    yarr = np.linspace(0., 1., shape[1])
    a.data[:] = np.meshgrid(xarr, yarr)[1]
    return a
示例#8
0
def test_precomputed_interpolation_time():
    """ Test interpolation with PrecomputedSparseFunction which accepts
        precomputed values for interpolation coefficients, but this time
        with a TimeFunction
    """
    shape = (101, 101)
    points = [(.05, .9), (.01, .8), (0.07, 0.84)]
    origin = (0, 0)

    grid = Grid(shape=shape, origin=origin)
    r = 2  # Constant for linear interpolation
    #  because we interpolate across 2 neighbouring points in each dimension

    u = TimeFunction(name='u', grid=grid, space_order=0, save=5)
    for it in range(5):
        u.data[it, :] = it

    gridpoints, interpolation_coeffs = precompute_linear_interpolation(points,
                                                                       grid, origin)

    sf = PrecomputedSparseTimeFunction(name='s', grid=grid, r=r, npoint=len(points),
                                       nt=5, gridpoints=gridpoints,
                                       interpolation_coeffs=interpolation_coeffs)

    assert sf.data.shape == (5, 3)

    eqn = sf.interpolate(u)
    op = Operator(eqn)
    op(time_m=0, time_M=4)

    for it in range(5):
        assert all(np.isclose(sf.data[it, :], it))
示例#9
0
    def test_subsampling(self):
        """
        Tests (time) subsampling support. This stresses the compiler as two
        different YASK kernels need to be generated.
        """
        grid = Grid(shape=(8, 8))
        time = grid.time_dim

        nt = 9

        u = TimeFunction(name='u', grid=grid)
        u.data_with_halo[:] = 0.

        # Setup subsampled function
        factor = 4
        nsamples = (nt+factor-1)//factor
        times = ConditionalDimension('t_sub', parent=time, factor=factor)
        usave = TimeFunction(name='usave', grid=grid, save=nsamples, time_dim=times)

        eqns = [Eq(u.forward, u + 1.), Eq(usave, u)]
        op = Operator(eqns)
        op.apply(time=nt-1)

        # Check numerical correctness
        assert np.all(usave.data[0] == 0.)
        assert np.all(usave.data[1] == 4.)
        assert np.all(usave.data[2] == 8.)

        # Check code generation
        solns = FindNodes(ForeignExpression).visit(op)
        assert len(solns) == 2
        assert all('run_solution' in str(i) for i in solns)
示例#10
0
def test_segmented_averaging():
    """
    Test for segmented operator execution of a two-sided, second order
    function (averaging) in space. The corresponding set of stencil
    offsets in the x domain are (1, 1).
    """
    grid = Grid(shape=(20, 20))
    x, y = grid.dimensions
    t = grid.stepping_dim
    f = TimeFunction(name='f', grid=grid)
    fi = f.indexed
    op = Operator(Eq(f, f.backward + (fi[t-1, x+1, y] + fi[t-1, x-1, y]) / 2.))

    # We add the average to the point itself, so the grid "interior"
    # (domain) is updated only.
    f_ref = TimeFunction(name='f', grid=grid)
    f_ref.data_with_halo[:] = 1.
    op(f=f_ref, time=1)
    assert (f_ref.data[1, :] == 2.).all()
    assert (f_ref.data_with_halo[1, 0] == 1.).all()
    assert (f_ref.data_with_halo[1, -1] == 1.).all()

    # Now we sweep the x direction in 4 segmented steps of 5 iterations each
    nsteps = 5
    f.data_with_halo[:] = 1.
    for i in range(4):
        op(f=f, time=1, x_m=i*nsteps, x_M=(i+1)*nsteps-1)
    assert (f_ref.data[1, :] == 2.).all()
    assert (f_ref.data_with_halo[1, 0] == 1.).all()
    assert (f_ref.data_with_halo[1, -1] == 1.).all()
示例#11
0
def test_segmented_fibonacci():
    """
    Test for segmented operator execution of a one-sided second order
    function (fibonacci). The corresponding set of stencil offsets in
    the time domain is (2, 0)
    """
    # Reference Fibonacci solution from:
    # https://stackoverflow.com/questions/4935957/fibonacci-numbers-with-an-one-liner-in-python-3
    fib = lambda n: reduce(lambda x, n: [x[1], x[0] + x[1]], range(n), [0, 1])[0]

    grid = Grid(shape=(5, 5))
    x, y = grid.dimensions
    t = grid.stepping_dim
    f = TimeFunction(name='f', grid=grid, time_order=2)
    fi = f.indexed
    op = Operator(Eq(fi[t, x, y], fi[t-1, x, y] + fi[t-2, x, y]))

    # Reference solution with a single invocation, up to timestep=12 (included)
    # =========================================================================
    # Developer note: the i-th Fibonacci number resides at logical index i-1
    f_ref = TimeFunction(name='f', grid=grid, time_order=2)
    f_ref.data[:] = 1.
    op(f=f_ref, time=12)
    assert (f_ref.data[11] == fib(12)).all()
    assert (f_ref.data[12] == fib(13)).all()

    # Now run with 2 invocations of 5 timesteps each
    nsteps = 5
    f.data[:] = 1.
    for i in range(2):
        op(f=f, time_m=2+i*nsteps, time_M=2+(i+1)*nsteps)
    assert (f.data[11] == fib(12)).all()
    assert (f.data[12] == fib(13)).all()
示例#12
0
    def test_fixed_halo_w_ofs(self, space_order):
        """
        Compute an N-point stencil sum, where N is the number of points sorrounding
        an inner (i.e., non-border) grid point.
        For example (in 2D view):

            1 1 1 ... 1 1
            1 4 4 ... 4 1
            1 4 4 ... 4 1
            1 4 4 ... 4 1
            1 1 1 ... 1 1
        """
        grid = Grid(shape=(16, 16, 16))
        v = TimeFunction(name='yv4D', grid=grid, space_order=space_order)
        v.data_with_halo[:] = 1.
        op = Operator(Eq(v.forward, v.laplace + 6*v), subs=grid.spacing_map)
        op(yv4D=v, time=0)
        assert 'run_solution' in str(op)
        # Chech that the domain size has actually been written to
        assert np.all(v.data[1] == 6.)
        # Check that the halo planes are untouched
        assert all(np.all(v.data_with_halo[1, i, :, :] == 1)
                   for i in range(v._size_halo.left[1]))
        assert all(np.all(v.data_with_halo[1, :, i, :] == 1)
                   for i in range(v._size_halo.left[2]))
        assert all(np.all(v.data_with_halo[1, :, :, i] == 1)
                   for i in range(v._size_halo.left[3]))
示例#13
0
文件: conftest.py 项目: opesci/devito
def unit_box_time(name='a', shape=(11, 11)):
    """Create a field with value 0. to 1. in each dimension"""
    grid = Grid(shape=shape)
    a = TimeFunction(name=name, grid=grid, time_order=1)
    dims = tuple([np.linspace(0., 1., d) for d in shape])
    a.data[0, :] = np.meshgrid(*dims)[1]
    a.data[1, :] = np.meshgrid(*dims)[1]
    return a
示例#14
0
 def test_second_derivatives_space(self, derivative, dim, order):
     """Test second derivative expressions against native sympy"""
     dim = dim(self.grid)
     u = TimeFunction(name='u', grid=self.grid, time_order=2, space_order=order)
     expr = getattr(u, derivative)
     # Establish native sympy derivative expression
     width = int(order / 2)
     indices = [(dim + i * dim.spacing) for i in range(-width, width + 1)]
     s_expr = u.diff(dim, dim).as_finite_difference(indices).evalf(_PRECISION)
     assert(simplify(expr - s_expr) == 0)  # Symbolic equality
     assert(expr == s_expr)  # Exact equailty
示例#15
0
    def test_advanced_indexing(self):
        """Test data packing/unpacking via advanced indexing."""
        grid = Grid(shape=(4, 4, 4))
        u = TimeFunction(name='yu4D', grid=grid, space_order=0, time_order=1)
        u.data[:] = 0.

        # Test slicing w/ negative indices, combined to explicit indexing
        u.data[1, 1:-1, 1:-1, 1:-1] = 6.
        assert np.all(u.data[0] == 0.)
        assert np.all(u.data[1, 1:-1, 1:-1, 1:-1] == 6.)
        assert np.all(u.data[1, :, 0] == 0.)
        assert np.all(u.data[1, :, -1] == 0.)
        assert np.all(u.data[1, :, :, 0] == 0.)
        assert np.all(u.data[1, :, :, -1] == 0.)
示例#16
0
    def test_logic_indexing(self):
        """Test logic indexing along stepping dimensions."""
        grid = Grid(shape=(4, 4, 4))
        v_mod = TimeFunction(name='v_mod', grid=grid)

        v_mod.data[0] = 1.
        v_mod.data[1] = 2.
        assert np.all(v_mod.data[0] == 1.)
        assert np.all(v_mod.data[1] == 2.)
        assert np.all(v_mod.data[2] == v_mod.data[0])
        assert np.all(v_mod.data[4] == v_mod.data[0])
        assert np.all(v_mod.data[3] == v_mod.data[1])
        assert np.all(v_mod.data[-1] == v_mod.data[1])
        assert np.all(v_mod.data[-2] == v_mod.data[0])
示例#17
0
 def test_increasing_multi_steps(self):
     """
     Apply the trivial equation ``u[t+1,x,y,z] = u[t,x,y,z] + 1`` for 11
     timesteps and check that all grid domain values are equal to 11 within
     ``u[1]`` and equal to 10 within ``u[0]``.
     """
     grid = Grid(shape=(8, 8, 8))
     u = TimeFunction(name='yu4D', grid=grid, space_order=0)
     u.data_with_halo[:] = 0.
     op = Operator(Eq(u.forward, u + 1.))
     op(yu4D=u, time=10)
     assert 'run_solution' in str(op)
     assert np.all(u.data[0] == 10.)
     assert np.all(u.data[1] == 11.)
示例#18
0
 def test_reverse_time_loop(self):
     """
     Check that YASK evaluates stencil equations correctly when iterating in the
     reverse time direction.
     """
     grid = Grid(shape=(4, 4, 4))
     u = TimeFunction(name='yu4D', grid=grid, space_order=0, time_order=2)
     u.data[:] = 2.
     eq = Eq(u.backward, u - 1.)
     op = Operator(eq)
     op(yu4D=u, time=2)
     assert 'run_solution' in str(op)
     assert np.all(u.data[2] == 2.)
     assert np.all(u.data[1] == 1.)
     assert np.all(u.data[0] == 0.)
示例#19
0
文件: test_dle.py 项目: opesci/devito
def _new_operator2(shape, time_order, blockshape=None, dle=None):
    blockshape = as_tuple(blockshape)
    grid = Grid(shape=shape, dtype=np.int32)
    infield = TimeFunction(name='infield', grid=grid, time_order=time_order)
    infield.data[:] = np.arange(reduce(mul, shape), dtype=np.int32).reshape(shape)
    outfield = TimeFunction(name='outfield', grid=grid, time_order=time_order)

    stencil = Eq(outfield.forward.indexify(),
                 outfield.indexify() + infield.indexify()*3.0)
    op = Operator(stencil, dle=dle)

    blocksizes = get_blocksizes(op, dle, grid, blockshape)
    op(infield=infield, outfield=outfield, t=10, **blocksizes)

    return outfield, op
示例#20
0
    def test_increasing_halo_wo_ofs(self, space_order, nosimd):
        """
        Apply the trivial equation ``u[t+1,x,y,z] = u[t,x,y,z] + 1`` and check
        that increasing space orders lead to proportionately larger halo regions,
        which are *not* written by the Operator.
        For example, with ``space_order = 0``, produce (in 2D view):

            1 1 1 ... 1 1
            1 1 1 ... 1 1
            1 1 1 ... 1 1
            1 1 1 ... 1 1
            1 1 1 ... 1 1

        With ``space_order = 1``, produce:

            0 0 0 0 0 0 0 0 0
            0 1 1 1 ... 1 1 0
            0 1 1 1 ... 1 1 0
            0 1 1 1 ... 1 1 0
            0 1 1 1 ... 1 1 0
            0 1 1 1 ... 1 1 0
            0 0 0 0 0 0 0 0 0

        And so on and so forth.
        """
        # SIMD on/off
        configuration['develop-mode'] = nosimd

        grid = Grid(shape=(16, 16, 16))
        u = TimeFunction(name='yu4D', grid=grid, space_order=space_order)
        u.data_with_halo[:] = 0.
        op = Operator(Eq(u.forward, u + 1.))
        op(yu4D=u, time=0)
        assert 'run_solution' in str(op)
        # Chech that the domain size has actually been written to
        assert np.all(u.data[1] == 1.)
        # Check that the halo planes are still 0
        assert all(np.all(u.data_with_halo[1, i, :, :] == 0)
                   for i in range(u._size_halo.left[1]))
        assert all(np.all(u.data_with_halo[1, :, i, :] == 0)
                   for i in range(u._size_halo.left[2]))
        assert all(np.all(u.data_with_halo[1, :, :, i] == 0)
                   for i in range(u._size_halo.left[3]))
示例#21
0
 def test_mixed_space_order(self):
     """
     Make sure that no matter whether data objects have different space order,
     as long as they have same domain, the Operator will be executed correctly.
     """
     grid = Grid(shape=(8, 8, 8))
     u = TimeFunction(name='yu4D', grid=grid, space_order=0)
     v = TimeFunction(name='yv4D', grid=grid, space_order=1)
     u.data_with_halo[:] = 1.
     v.data_with_halo[:] = 2.
     op = Operator(Eq(v.forward, u + v))
     op(yu4D=u, yv4D=v, time=0)
     assert 'run_solution' in str(op)
     # Chech that the domain size has actually been written to
     assert np.all(v.data[1] == 3.)
     # Check that the halo planes are untouched
     assert np.all(v.data_with_halo[1, 0, :, :] == 2)
     assert np.all(v.data_with_halo[1, :, 0, :] == 2)
     assert np.all(v.data_with_halo[1, :, :, 0] == 2)
示例#22
0
def test_at_w_mpi():
    """Make sure autotuning works in presence of MPI. MPI ranks work
    in isolation to determine the best block size, locally."""
    grid = Grid(shape=(8, 8))
    t = grid.stepping_dim
    x, y = grid.dimensions

    f = TimeFunction(name='f', grid=grid, time_order=1)
    f.data_with_halo[:] = 1.

    eq = Eq(f.forward, f[t, x, y-1] + f[t, x, y+1])
    op = Operator(eq, dle=('advanced', {'openmp': False, 'blockinner': True}))

    op.apply(time=-1, autotune=('basic', 'runtime'))
    # Nothing really happened, as not enough timesteps
    assert np.all(f.data_ro_domain[0] == 1.)
    assert np.all(f.data_ro_domain[1] == 1.)

    # The 'destructive' mode writes directly to `f` for whatever timesteps required
    # to perform the autotuning. Eventually, the result is complete garbage; note
    # also that this autotuning mode disables the halo exchanges
    op.apply(time=-1, autotune=('basic', 'destructive'))
    assert np.all(f._data_ro_with_inhalo.sum() == 904)

    # Check the halo hasn't been touched during AT
    glb_pos_map = grid.distributor.glb_pos_map
    if LEFT in glb_pos_map[y]:
        assert np.all(f._data_ro_with_inhalo[:, :, -1] == 1)
    else:
        assert np.all(f._data_ro_with_inhalo[:, :, 0] == 1)

    # Finally, try running w/o AT, just to be sure nothing was broken
    f.data_with_halo[:] = 1.
    op.apply(time=2)
    if LEFT in glb_pos_map[y]:
        assert np.all(f.data_ro_domain[1, :, 0] == 5.)
        assert np.all(f.data_ro_domain[1, :, 1] == 7.)
        assert np.all(f.data_ro_domain[1, :, 2:4] == 8.)
    else:
        assert np.all(f.data_ro_domain[1, :, 4:6] == 8)
        assert np.all(f.data_ro_domain[1, :, 6] == 7)
        assert np.all(f.data_ro_domain[1, :, 7] == 5)
示例#23
0
def test_mpi_operator():
    grid = Grid(shape=(4,))
    f = TimeFunction(name='f', grid=grid)
    g = TimeFunction(name='g', grid=grid)

    # Using `sum` creates a stencil in `x`, which in turn will
    # trigger the generation of code for MPI halo exchange
    op = Operator(Eq(f.forward, f.sum() + 1))
    op.apply(time=2)

    pkl_op = pickle.dumps(op)
    new_op = pickle.loads(pkl_op)

    assert str(op) == str(new_op)

    new_op.apply(time=2, f=g)
    assert np.all(f.data[0] == [2., 3., 3., 3.])
    assert np.all(f.data[1] == [3., 6., 7., 7.])
    assert np.all(g.data[0] == f.data[0])
    assert np.all(g.data[1] == f.data[1])
示例#24
0
    def test_misc_dims(self):
        """
        Tests grid-independent :class:`Function`s, which require YASK's "misc"
        dimensions.
        """
        dx = Dimension(name='dx')
        grid = Grid(shape=(10, 10))
        x, y = grid.dimensions
        time = grid.time_dim

        u = TimeFunction(name='u', grid=grid, time_order=1, space_order=4, save=4)
        c = Function(name='c', dimensions=(x, dx), shape=(10, 5))

        step = Eq(u.forward, (
            u[time, x-2, y] * c[x, 0]
            + u[time, x-1, y] * c[x, 1]
            + u[time, x, y] * c[x, 2]
            + u[time, x+1, y] * c[x, 3]
            + u[time, x+2, y] * c[x, 4]))

        for i in range(10):
            c.data[i, 0] = 1.0+i
            c.data[i, 1] = 1.0+i
            c.data[i, 2] = 3.0+i
            c.data[i, 3] = 6.0+i
            c.data[i, 4] = 5.0+i

        u.data[:] = 0.0
        u.data[0, 2, :] = 2.0

        op = Operator(step)
        assert 'run_solution' in str(op)

        op(time_m=0, time_M=0)
        assert(np.all(u.data[1, 0, :] == 10.0))
        assert(np.all(u.data[1, 1, :] == 14.0))
        assert(np.all(u.data[1, 2, :] == 10.0))
        assert(np.all(u.data[1, 3, :] == 8.0))
        assert(np.all(u.data[1, 4, :] == 10.0))
        assert(np.all(u.data[1, 5:10, :] == 0.0))
示例#25
0
    def test_irregular_write(self):
        """
        Compute a simple stencil S w/o offloading it to YASK because of the presence
        of indirect write accesses (e.g. A[B[i]] = ...); YASK grid functions are however
        used in the generated code to access the data at the right location. This
        test checks that the numerical output is correct after this transformation.

        Initially, the input array (a YASK grid, under the hood), at t=0 is (2D view):

            0 1 2 3
            0 1 2 3
            0 1 2 3
            0 1 2 3

        Then, the Operator "flips" its content, and at timestep t=1 we get (2D view):

            3 2 1 0
            3 2 1 0
            3 2 1 0
            3 2 1 0
        """
        grid = Grid(shape=(4, 4, 4))
        x, y, z = grid.dimensions
        t = grid.stepping_dim
        p = SparseTimeFunction(name='points', grid=grid, nt=1, npoint=4)
        u = TimeFunction(name='yu4D', grid=grid, space_order=0)
        for i in range(4):
            for j in range(4):
                for k in range(4):
                    u.data[0, i, j, k] = k
        ind = lambda i: p[0, i]
        eqs = [Eq(p[0, 0], 3.), Eq(p[0, 1], 2.),
               Eq(p[0, 2], 1.), Eq(p[0, 3], 0.),
               Eq(u[t + 1, ind(x), ind(y), ind(z)], u[t, x, y, z])]
        op = Operator(eqs, subs=grid.spacing_map)
        op(yu4D=u, time=0)
        assert 'run_solution' not in str(op)
        assert all(np.all(u.data[1, :, :, i] == 3 - i) for i in range(4))
示例#26
0
文件: test_dle.py 项目: opesci/devito
def _new_operator3(shape, blockshape=None, dle=None):
    blockshape = as_tuple(blockshape)
    grid = Grid(shape=shape)
    spacing = 0.1
    a = 0.5
    c = 0.5
    dx2, dy2 = spacing**2, spacing**2
    dt = dx2 * dy2 / (2 * a * (dx2 + dy2))

    # Allocate the grid and set initial condition
    # Note: This should be made simpler through the use of defaults
    u = TimeFunction(name='u', grid=grid, time_order=1, space_order=(2, 2, 2))
    u.data[0, :] = np.arange(reduce(mul, shape), dtype=np.int32).reshape(shape)

    # Derive the stencil according to devito conventions
    eqn = Eq(u.dt, a * (u.dx2 + u.dy2) - c * (u.dxl + u.dyl))
    stencil = solve(eqn, u.forward)
    op = Operator(Eq(u.forward, stencil), dle=dle)

    blocksizes = get_blocksizes(op, dle, grid, blockshape)
    op.apply(u=u, t=10, dt=dt, **blocksizes)

    return u.data[1, :], op
示例#27
0
 def test_constants(self):
     """
     Check that :class:`Constant` objects are treated correctly.
     """
     grid = Grid(shape=(4, 4, 4))
     c = Constant(name='c', value=2., dtype=grid.dtype)
     p = SparseTimeFunction(name='points', grid=grid, nt=1, npoint=1)
     u = TimeFunction(name='yu4D', grid=grid, space_order=0)
     u.data[:] = 0.
     op = Operator([Eq(u.forward, u + c), Eq(p[0, 0], 1. + c)])
     assert 'run_solution' in str(op)
     op.apply(yu4D=u, c=c, time=9)
     # Check YASK did its job and could read constant grids w/o problems
     assert np.all(u.data[0] == 20.)
     # Check the Constant could be read correctly even in Devito-land, i.e.,
     # outside of run_solution
     assert p.data[0][0] == 3.
     # Check re-executing with another constant gives the correct result
     c2 = Constant(name='c', value=5.)
     op.apply(yu4D=u, c=c2, time=2)
     assert np.all(u.data[0] == 30.)
     assert np.all(u.data[1] == 35.)
     assert p.data[0][0] == 6.
示例#28
0
def execute_devito(ui, spacing=0.01, a=0.5, timesteps=500):
    """Execute diffusion stencil using the devito Operator API."""
    nx, ny = ui.shape
    dx2, dy2 = spacing**2, spacing**2
    dt = dx2 * dy2 / (2 * a * (dx2 + dy2))
    # Allocate the grid and set initial condition
    # Note: This should be made simpler through the use of defaults
    grid = Grid(shape=(nx, ny))
    u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)
    u.data[0, :] = ui[:]

    # Derive the stencil according to devito conventions
    eqn = Eq(u.dt, a * (u.dx2 + u.dy2))
    stencil = solve(eqn, u.forward)
    op = Operator(Eq(u.forward, stencil))

    # Execute the generated Devito stencil operator
    tstart = time.time()
    op.apply(u=u, t=timesteps, dt=dt)
    runtime = time.time() - tstart
    log("Devito: Diffusion with dx=%0.4f, dy=%0.4f, executed %d timesteps in %f seconds"
        % (spacing, spacing, timesteps, runtime))
    return u.data[1, :], runtime
示例#29
0
 def test_repeated_op_calls(self):
     """
     Tests that calling the same Operator with different input data
     produces the expected results.
     """
     grid = Grid(shape=(4, 4, 4))
     u = TimeFunction(name='yu4D', grid=grid, space_order=0)
     u.data[:] = 0.
     op = Operator(Eq(u.forward, u + 1.))
     # First run
     op(time=0)
     assert np.all(u.data[1] == 1.)
     assert u.data[:].sum() == np.prod(grid.shape)
     # Nothing should have changed at this point
     op(time=0, yu4D=u)
     assert np.all(u.data[1] == 1.)
     assert u.data[:].sum() == np.prod(grid.shape)
     # Now try with a different grid
     grid = Grid(shape=(3, 3, 3))
     u = TimeFunction(name='yu4D', grid=grid, space_order=0)
     u.data[:] = 0.
     op(time=0, yu4D=u)
     assert np.all(u.data[1] == 1.)
     assert u.data[:].sum() == np.prod(grid.shape)
示例#30
0
    def forward(self,
                src=None,
                rec=None,
                u=None,
                v=None,
                m=None,
                epsilon=None,
                delta=None,
                theta=None,
                phi=None,
                save=False,
                kernel='centered',
                **kwargs):
        """
        Forward modelling function that creates the necessary
        data objects for running a forward modelling operator.

        :param src: Symbol with time series data for the injected source term
        :param rec: Symbol to store interpolated receiver data
        :param u: (Optional) Symbol to store the computed wavefield
        :param m: (Optional) Symbol for the time-constant square slowness
        :param save: Option to store the entire (unrolled) wavefield
        :param kernel: type of discretization, centered or shifted

        :returns: Receiver, wavefield and performance summary
        """

        # Space order needs to be halved in the shifted case to have an
        # overall space_order discretization
        self.space_order = self.space_order // 2 if kernel == 'shifted' \
            else self.space_order
        # Source term is read-only, so re-use the default
        if src is None:
            src = self.source
        # Create a new receiver object to store the result
        if rec is None:
            rec = Receiver(name='rec',
                           grid=self.model.grid,
                           ntime=self.receiver.nt,
                           coordinates=self.receiver.coordinates.data)

        # Create the forward wavefield if not provided
        if u is None:
            u = TimeFunction(name='u',
                             grid=self.model.grid,
                             save=save,
                             time_dim=self.source.nt if save else None,
                             time_order=self.time_order,
                             space_order=self.space_order)
        # Create the forward wavefield if not provided
        if v is None:
            v = TimeFunction(name='v',
                             grid=self.model.grid,
                             save=save,
                             time_dim=self.source.nt if save else None,
                             time_order=self.time_order,
                             space_order=self.space_order)
        # Pick m from model unless explicitly provided
        if m is None:
            m = m or self.model.m
        if epsilon is None:
            epsilon = epsilon or self.model.epsilon
        if delta is None:
            delta = delta or self.model.delta
        if theta is None:
            theta = theta or self.model.theta
        if phi is None:
            phi = phi or self.model.phi

        # Execute operator and return wavefield and receiver data
        op = self.op_fwd(kernel, save)

        if len(m.shape) == 2:
            summary = op.apply(src=src,
                               rec=rec,
                               u=u,
                               v=v,
                               m=m,
                               epsilon=epsilon,
                               delta=delta,
                               theta=theta,
                               dt=self.dt,
                               **kwargs)
        else:
            summary = op.apply(src=src,
                               rec=rec,
                               u=u,
                               v=v,
                               m=m,
                               epsilon=epsilon,
                               delta=delta,
                               theta=theta,
                               phi=phi,
                               dt=self.dt,
                               **kwargs)
        return rec, u, v, summary
示例#31
0
 def u(self, model, space_order, kernel):
     return TimeFunction(name='u',
                         grid=model.grid,
                         space_order=space_order,
                         time_order=2)
示例#32
0
def td_born_adjoint(born_data, model_pert, src_coords, vel, geometry, solver, params, dt=None):
    """
    @Params
    born_data: float32 numpy array of size (Ns, Nt, Nr).
    model_pert: float32 numpy array of size (Nt, Nx, Nz). This will be the output. Assumed to be zeros.
    src_coords: float32 numpy array of size (Ns, 2) with the source coordinates.
    vel: background velocity model object (The object should be the same type as returned by create_model() function)
    geometry: geometry object
    solver: acoustic solver object
    params: python dict of parameters

    Note: The receiver coordinates are not needed since it is assumed that they remain fixed for all sources.
    So the receiver information should already be available to the solver object.
    """

    # Get params
    nbl = params["nbl"]
    nx = params["Nx"]
    nz = params["Nz"]
    ns = params["Ns"]
    nt = params["Nt"]
    space_order = params["so"]
    time_order = params["to"]

    offset = nbl + space_order
    if dt is None:
        dt = vel.critical_dt

    # Allocate time function to store adjoint wavefield
    u = TimeFunction(
        name='u',
        grid=vel.grid,
        time_order=time_order,
        space_order=space_order,
        save=nt
    )

    # Create time dependent Born modeling operator
    op = td_born_adjoint_op(model=vel, geometry=geometry, time_order=time_order, space_order=space_order)

    # Second derivative filter stencil
    laplacian_filter = np.asarray([1, -2, 1], dtype=np.float32) / (dt ** 2.0)

    # Perform adjoint Born modeling
    for i in range(ns):
        # Update source location
        geometry.src_positions[0, :] = src_coords[i, :]

        # Get Born modeled data for the current shot and update born_data array appropriately
        _, u0, _ = solver.forward(vp=vel.vp, save=True)
        spim.convolve1d(
            input=u0.data_with_halo,
            weights=laplacian_filter,
            axis=0,
            output=u0.data_with_halo[:, :, :],
            mode='nearest'
        )
        op.apply(u=u, born_data_rec=born_data[i, :, :], dt=dt)

        # Add to model_pert
        model_pert += \
            u.data_with_halo[:, offset:nx + offset, offset:nz + offset] * \
            u0.data_with_halo[:, offset:nx + offset, offset:nz + offset]
示例#33
0
文件: test_tti.py 项目: opesci/devito
def test_tti(shape, space_order, kernel):
    """
    This first test compare the solution of the acoustic wave-equation and the
    TTI wave-eqatuon with all anisotropy parametrs to 0. The two solutions should
    be the same.
    """
    if kernel == 'shifted':
        space_order *= 2
    to = 2
    so = space_order
    nbpml = 10
    origin = [0. for _ in shape]
    spacing = [10. for _ in shape]
    vp = 1.5 * np.ones(shape)
    nrec = shape[0]

    # Constant model for true velocity
    model = Model(origin=origin, shape=shape, vp=vp,
                  spacing=spacing, nbpml=nbpml, space_order=space_order,
                  epsilon=np.zeros(shape), delta=np.zeros(shape),
                  theta=np.zeros(shape), phi=np.zeros(shape))

    # Source and receiver geometries
    src_coordinates = np.empty((1, len(spacing)))
    src_coordinates[0, :] = np.array(model.domain_size) * .5
    src_coordinates[0, -1] = model.origin[-1] + 2 * spacing[-1]

    rec_coordinates = np.empty((nrec, len(spacing)))
    rec_coordinates[:, 0] = np.linspace(0., model.domain_size[0], num=nrec)
    rec_coordinates[:, 1] = np.array(model.domain_size)[1] * .5
    rec_coordinates[:, -1] = model.origin[-1] + 2 * spacing[-1]

    geometry = AcquisitionGeometry(model, rec_coordinates, src_coordinates,
                                   t0=0.0, tn=350., src_type='Ricker', f0=0.010)

    acoustic = AcousticWaveSolver(model, geometry, time_order=2, space_order=so)
    rec, u1, _ = acoustic.forward(save=False)

    # Solvers
    solver_tti = AnisotropicWaveSolver(model, geometry, time_order=2,
                                       space_order=space_order)

    # zero src
    src = geometry.src
    src.data.fill(0.)
    # last time index
    nt = geometry.nt
    last = (nt - 2) % 3
    indlast = [(last + 1) % 3, last % 3, (last-1) % 3]

    # Create new wavefield object restart forward computation
    u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=so)
    u.data[0:3, :] = u1.data[indlast, :]
    acoustic.forward(save=False, u=u, time_M=10, src=src)

    utti = TimeFunction(name='u', grid=model.grid, time_order=to, space_order=so)
    vtti = TimeFunction(name='v', grid=model.grid, time_order=to, space_order=so)

    utti.data[0:to+1, :] = u1.data[indlast[:to+1], :]
    vtti.data[0:to+1, :] = u1.data[indlast[:to+1], :]

    solver_tti.forward(u=utti, v=vtti, kernel=kernel, time_M=10, src=src)

    normal_u = u.data[:]
    normal_utti = .5 * utti.data[:]
    normal_vtti = .5 * vtti.data[:]

    res = linalg.norm((normal_u - normal_utti - normal_vtti).reshape(-1))**2
    res /= np.linalg.norm(normal_u.reshape(-1))**2

    log("Difference between acoustic and TTI with all coefficients to 0 %2.4e" % res)
    assert np.isclose(res, 0.0, atol=1e-4)
示例#34
0
def heat3d_devito(in_field, alpha, Tcool, dt, nt, platform='default', result='time'): 
    '''
    Solves the 3 dimensional heat equation using devito.
    
    in_field  -- input field (nx x ny x nz)
    alpha -- thermal diffusivity
    Tcool -- initial temperature
    dt -- time step
    nt -- number of iterations
    platform -- the platform on which the equation is to be solved
    result -- either 'time', 'field' or 'both', returning either the total time the computation took, the resulting field or both 
    '''
    
    nx = in_field.shape[0]
    ny = in_field.shape[1]
    nz = in_field.shape[2]
    
    grid = Grid(shape = (nx, ny, nz), subdomains = (mid, ), extent = (2., 2., 2.))
    
    u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2, dtype=np.float64)
    u.data[:, :, :, :] = in_field    

    x, y, z = grid.dimensions
    t = grid.stepping_dim
    #boundary conditions
    bc =  [Eq(u[t+1, 0   , y, z], Tcool)]  # left
    bc += [Eq(u[t+1, nx-1, y, z], Tcool)]  # right
    bc += [Eq(u[t+1, x, ny-1, z], Tcool)]  # top
    bc += [Eq(u[t+1, x,    0, z], Tcool)]  # bottom
    bc += [Eq(u[t+1, x, y,    0], Tcool)]  # top
    bc += [Eq(u[t+1, x, y, nz-1], Tcool)]  # bottom

    #define heat equation in 3d
    eq = Eq(u.dt, alpha * ((u.dx2)+(u.dy2)+(u.dz2)))
    #solve equation
    stencil = solve(eq, u.forward)
    #create stencil
    eq_stencil = Eq(u.forward, stencil,subdomain = grid.subdomains['middle'])
    eq_stencil
    
    #solve
    if platform == 'default':
        op = Operator([eq_stencil]+bc)
    else:
        op = Operator([eq_stencil]+bc, platform=platform)
        
    #print(op.ccode)
    
    tic = get_time()
    op(time=nt, dt=dt)
    #toc = time.time()
    
    elapsed_time = get_time() - tic
    
    out_field = u.data[0,:,:,:]

    if result == 'time':
        return elapsed_time
    if result == 'field':
        return out_field
    if result == 'both':
        return elapsed_time, out_field
from devito import Grid, TimeFunction, Eq, solve, Operator

so_dev = 6
to_dev = 2
extent = (150., 150.)
shape = (151, 151)

dt = 0.2

grid = Grid(extent=extent, shape=shape)
t_end = 75
ns = int(t_end / dt)  # Number of timesteps = total time/timestep size.

# Set up function and stencil
u_dev = TimeFunction(name="u_dev",
                     grid=grid,
                     space_order=so_dev,
                     time_order=to_dev)

u_dev.data[:] = 0.

time = grid.time_dim
x = grid.dimensions[0]
y = grid.dimensions[1]
h_x = grid.spacing[0]
h_y = grid.spacing[1]
# Optimized stencil coefficients
a_0 = -2.81299833
a_1 = 1.56808208
a_2 = -0.17723283
a_3 = 0.01564992
示例#36
0
    def forward(self,
                src=None,
                rec=None,
                v=None,
                r=None,
                p=None,
                qp=None,
                b=None,
                vp=None,
                save=None,
                **kwargs):
        """
        Forward modelling function that creates the necessary
        data objects for running a forward modelling operator.

        Parameters
        ----------
        geometry : AcquisitionGeometry
            Geometry object that contains the source (SparseTimeFunction) and
            receivers (SparseTimeFunction) and their position.
        v : VectorTimeFunction, optional
            The computed particle velocity.
        r : TimeFunction, optional
            The computed memory variable.
        p : TimeFunction, optional
            Stores the computed wavefield.
        qp : Function, optional
            The P-wave quality factor.
        b : Function, optional
            The time-constant inverse density.
        vp : Function or float, optional
            The time-constant velocity.
        save : bool, optional
            Whether or not to save the entire (unrolled) wavefield.

        Returns
        -------
        Receiver, wavefield and performance summary
        """
        # Source term is read-only, so re-use the default
        src = src or self.geometry.src

        # Create a new receiver object to store the result
        rec = rec or self.geometry.rec

        # Create all the fields v, p, r
        save_t = src.nt if save else None
        v = v or VectorTimeFunction(name="v",
                                    grid=self.model.grid,
                                    save=save_t,
                                    time_order=1,
                                    space_order=self.space_order)

        # Create the forward wavefield if not provided
        p = p or TimeFunction(name="p",
                              grid=self.model.grid,
                              save=save_t,
                              time_order=1,
                              space_order=self.space_order,
                              staggered=NODE)

        # Memory variable:
        r = r or TimeFunction(name="r",
                              grid=self.model.grid,
                              save=save_t,
                              time_order=1,
                              space_order=self.space_order,
                              staggered=NODE)

        kwargs.update({k.name: k for k in v})

        # Pick physical parameters from model unless explicitly provided
        b = b or self.model.b
        qp = qp or self.model.qp

        # Pick vp from model unless explicitly provided
        vp = vp or self.model.vp

        if self.kernel == 'blanch_symes':
            # Execute operator and return wavefield and receiver data
            # With Memory variable
            summary = self.op_fwd(save).apply(src=src,
                                              rec=rec,
                                              qp=qp,
                                              r=r,
                                              p=p,
                                              b=b,
                                              vp=vp,
                                              dt=kwargs.pop('dt', self.dt),
                                              **kwargs)
        else:
            # Execute operator and return wavefield and receiver data
            # Without Memory variable
            summary = self.op_fwd(save).apply(src=src,
                                              rec=rec,
                                              qp=qp,
                                              p=p,
                                              b=b,
                                              vp=vp,
                                              dt=kwargs.pop('dt', self.dt),
                                              **kwargs)
        return rec, p, summary
示例#37
0
    def adjoint(self,
                rec,
                srca=None,
                p=None,
                r=None,
                model=None,
                save=None,
                **kwargs):
        """
        Adjoint modelling function that creates the necessary
        data objects for running an adjoint modelling operator.

        Parameters
        ----------
        geometry : AcquisitionGeometry
            Geometry object that contains the source (SparseTimeFunction) and
            receivers (SparseTimeFunction) and their position.
        p : TimeFunction, optional
            The computed wavefield first component.
        r : TimeFunction, optional
            The computed wavefield second component.
        model : Model, optional
            Object containing the physical parameters.
        vp : Function or float, optional
            The time-constant velocity.
        epsilon : Function or float, optional
            The time-constant first Thomsen parameter.
        delta : Function or float, optional
            The time-constant second Thomsen parameter.
        theta : Function or float, optional
            The time-constant Dip angle (radians).
        phi : Function or float, optional
            The time-constant Azimuth angle (radians).

        Returns
        -------
        Adjoint source, wavefield and performance summary.
        """
        if self.kernel == 'staggered':
            time_order = 1
            dims = self.model.space_dimensions
            stagg_p = (-dims[-1])
            stagg_r = (-dims[0],
                       -dims[1]) if self.model.grid.dim == 3 else (-dims[0])
        else:
            time_order = 2
            stagg_p = stagg_r = None

        # Source term is read-only, so re-use the default
        srca = srca or self.geometry.new_src(name='srca', src_type=None)

        # Create the wavefield if not provided
        if p is None:
            p = TimeFunction(name='p',
                             grid=self.model.grid,
                             staggered=stagg_p,
                             time_order=time_order,
                             space_order=self.space_order)
        # Create the wavefield if not provided
        if r is None:
            r = TimeFunction(name='r',
                             grid=self.model.grid,
                             staggered=stagg_r,
                             time_order=time_order,
                             space_order=self.space_order)

        if self.kernel == 'staggered':
            vx, vz, vy = particle_velocity_fields(self.model, self.space_order)
            kwargs["vx"] = vx
            kwargs["vz"] = vz
            if vy is not None:
                kwargs["vy"] = vy

        model = model or self.model
        # Pick vp and Thomsen parameters from model unless explicitly provided
        kwargs.update(model.physical_params(**kwargs))
        if self.model.dim < 3:
            kwargs.pop('phi', None)
        # Execute operator and return wavefield and receiver data
        summary = self.op_adj().apply(srca=srca,
                                      rec=rec,
                                      p=p,
                                      r=r,
                                      dt=kwargs.pop('dt', self.dt),
                                      time_m=0 if time_order == 1 else None,
                                      **kwargs)
        return srca, p, r, summary
示例#38
0
    def jacobian(self,
                 dm,
                 src=None,
                 rec=None,
                 u0=None,
                 v0=None,
                 du=None,
                 dv=None,
                 model=None,
                 save=None,
                 kernel='centered',
                 **kwargs):
        """
        Linearized Born modelling function that creates the necessary
        data objects for running an adjoint modelling operator.

        Parameters
        ----------
        src : SparseTimeFunction or array_like, optional
            Time series data for the injected source term.
        rec : SparseTimeFunction or array_like, optional
            The interpolated receiver data.
        u : TimeFunction, optional
            The computed background wavefield first component.
        v : TimeFunction, optional
            The computed background wavefield second component.
        du : TimeFunction, optional
            The computed perturbed wavefield first component.
        dv : TimeFunction, optional
            The computed perturbed wavefield second component.
        model : Model, optional
            Object containing the physical parameters.
        vp : Function or float, optional
            The time-constant velocity.
        epsilon : Function or float, optional
            The time-constant first Thomsen parameter.
        delta : Function or float, optional
            The time-constant second Thomsen parameter.
        theta : Function or float, optional
            The time-constant Dip angle (radians).
        phi : Function or float, optional
            The time-constant Azimuth angle (radians).
        """
        if kernel != 'centered':
            raise ValueError(
                'Only centered kernel is supported for the jacobian')

        dt = kwargs.pop('dt', self.dt)
        # Source term is read-only, so re-use the default
        src = src or self.geometry.src
        # Create a new receiver object to store the result
        rec = rec or self.geometry.rec

        # Create the forward wavefields u, v du and dv if not provided
        u0 = u0 or TimeFunction(name='u0',
                                grid=self.model.grid,
                                time_order=2,
                                space_order=self.space_order)
        v0 = v0 or TimeFunction(name='v0',
                                grid=self.model.grid,
                                time_order=2,
                                space_order=self.space_order)
        du = du or TimeFunction(name='du',
                                grid=self.model.grid,
                                time_order=2,
                                space_order=self.space_order)
        dv = dv or TimeFunction(name='dv',
                                grid=self.model.grid,
                                time_order=2,
                                space_order=self.space_order)

        model = model or self.model
        # Pick vp and Thomsen parameters from model unless explicitly provided
        kwargs.update(model.physical_params(**kwargs))
        if self.model.dim < 3:
            kwargs.pop('phi', None)

        # Execute operator and return wavefield and receiver data
        summary = self.op_jac().apply(dm=dm,
                                      u0=u0,
                                      v0=v0,
                                      du=du,
                                      dv=dv,
                                      src=src,
                                      rec=rec,
                                      dt=dt,
                                      **kwargs)
        return rec, u0, v0, du, dv, summary
示例#39
0
    def jacobian_adjoint(self,
                         rec,
                         u0,
                         v0,
                         du=None,
                         dv=None,
                         dm=None,
                         model=None,
                         checkpointing=False,
                         kernel='centered',
                         **kwargs):
        """
        Gradient modelling function for computing the adjoint of the
        Linearized Born modelling function, ie. the action of the
        Jacobian adjoint on an input data.

        Parameters
        ----------
        rec : SparseTimeFunction
            Receiver data.
        u0 : TimeFunction
            The computed background wavefield.
        v0 : TimeFunction, optional
            The computed background wavefield.
        du : Function or float
            The computed perturbed wavefield.
        dv : Function or float
            The computed perturbed wavefield.
        dm : Function, optional
            Stores the gradient field.
        model : Model, optional
            Object containing the physical parameters.
        vp : Function or float, optional
            The time-constant velocity.
        epsilon : Function or float, optional
            The time-constant first Thomsen parameter.
        delta : Function or float, optional
            The time-constant second Thomsen parameter.
        theta : Function or float, optional
            The time-constant Dip angle (radians).
        phi : Function or float, optional
            The time-constant Azimuth angle (radians).

        Returns
        -------
        Gradient field and performance summary.
        """
        if kernel != 'centered':
            raise ValueError(
                'Only centered kernel is supported for the jacobian_adj')

        dt = kwargs.pop('dt', self.dt)
        # Gradient symbol
        dm = dm or Function(name='dm', grid=self.model.grid)

        # Create the perturbation wavefields if not provided
        du = du or TimeFunction(name='du',
                                grid=self.model.grid,
                                time_order=2,
                                space_order=self.space_order)
        dv = dv or TimeFunction(name='dv',
                                grid=self.model.grid,
                                time_order=2,
                                space_order=self.space_order)

        model = model or self.model
        # Pick vp and Thomsen parameters from model unless explicitly provided
        kwargs.update(model.physical_params(**kwargs))
        if self.model.dim < 3:
            kwargs.pop('phi', None)

        if checkpointing:
            u0 = TimeFunction(name='u0',
                              grid=self.model.grid,
                              time_order=2,
                              space_order=self.space_order)
            v0 = TimeFunction(name='v0',
                              grid=self.model.grid,
                              time_order=2,
                              space_order=self.space_order)
            cp = DevitoCheckpoint([u0, v0])
            n_checkpoints = None
            wrap_fw = CheckpointOperator(self.op_fwd(save=False),
                                         src=self.geometry.src,
                                         u=u0,
                                         v=v0,
                                         dt=dt,
                                         **kwargs)
            wrap_rev = CheckpointOperator(self.op_jacadj(save=False),
                                          u0=u0,
                                          v0=v0,
                                          du=du,
                                          dv=dv,
                                          rec=rec,
                                          dm=dm,
                                          dt=dt,
                                          **kwargs)

            # Run forward
            wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints,
                           rec.data.shape[0] - 2)
            wrp.apply_forward()
            summary = wrp.apply_reverse()
        else:
            summary = self.op_jacadj().apply(rec=rec,
                                             dm=dm,
                                             u0=u0,
                                             v0=v0,
                                             du=du,
                                             dv=dv,
                                             dt=dt,
                                             **kwargs)
        return dm, summary
示例#40
0
    def forward(self,
                src=None,
                rec=None,
                u=None,
                v=None,
                model=None,
                save=False,
                **kwargs):
        """
        Forward modelling function that creates the necessary
        data objects for running a forward modelling operator.

        Parameters
        ----------
        geometry : AcquisitionGeometry
            Geometry object that contains the source (SparseTimeFunction) and
            receivers (SparseTimeFunction) and their position.
        u : TimeFunction, optional
            The computed wavefield first component.
        v : TimeFunction, optional
            The computed wavefield second component.
        model : Model, optional
            Object containing the physical parameters.
        vp : Function or float, optional
            The time-constant velocity.
        epsilon : Function or float, optional
            The time-constant first Thomsen parameter.
        delta : Function or float, optional
            The time-constant second Thomsen parameter.
        theta : Function or float, optional
            The time-constant Dip angle (radians).
        phi : Function or float, optional
            The time-constant Azimuth angle (radians).
        save : bool, optional
            Whether or not to save the entire (unrolled) wavefield.
        kernel : str, optional
            Type of discretization, centered or shifted.

        Returns
        -------
        Receiver, wavefield and performance summary.
        """
        if self.kernel == 'staggered':
            time_order = 1
            dims = self.model.space_dimensions
            stagg_u = (-dims[-1])
            stagg_v = (-dims[0],
                       -dims[1]) if self.model.grid.dim == 3 else (-dims[0])
        else:
            time_order = 2
            stagg_u = stagg_v = None
        # Source term is read-only, so re-use the default
        src = src or self.geometry.src
        # Create a new receiver object to store the result
        rec = rec or self.geometry.rec

        # Create the forward wavefield if not provided
        if u is None:
            u = TimeFunction(name='u',
                             grid=self.model.grid,
                             staggered=stagg_u,
                             save=self.geometry.nt if save else None,
                             time_order=time_order,
                             space_order=self.space_order)
        # Create the forward wavefield if not provided
        if v is None:
            v = TimeFunction(name='v',
                             grid=self.model.grid,
                             staggered=stagg_v,
                             save=self.geometry.nt if save else None,
                             time_order=time_order,
                             space_order=self.space_order)

        if self.kernel == 'staggered':
            vx, vz, vy = particle_velocity_fields(self.model, self.space_order)
            kwargs["vx"] = vx
            kwargs["vz"] = vz
            if vy is not None:
                kwargs["vy"] = vy

        model = model or self.model
        # Pick vp and Thomsen parameters from model unless explicitly provided
        kwargs.update(model.physical_params(**kwargs))
        if self.model.dim < 3:
            kwargs.pop('phi', None)
        # Execute operator and return wavefield and receiver data
        summary = self.op_fwd(save).apply(src=src,
                                          rec=rec,
                                          u=u,
                                          v=v,
                                          dt=kwargs.pop('dt', self.dt),
                                          **kwargs)
        return rec, u, v, summary
示例#41
0
def timefunction(name, space_order=1):
    return TimeFunction(name=name, grid=grid, space_order=space_order)
def ForwardOperator(model,
                    source,
                    receiver,
                    space_order=4,
                    save=False,
                    kernel='centered',
                    **kwargs):
    """
       Constructor method for the forward modelling operator in an acoustic media

       :param model: :class:`Model` object containing the physical parameters
       :param src: None ot IShot() (not currently supported properly)
       :param data: IShot() object containing the acquisition geometry and field data
       :param: time_order: Time discretization order
       :param: spc_order: Space discretization order
       """
    dt = model.grid.time_dim.spacing

    m, damp, epsilon, delta, theta, phi = (model.m, model.damp, model.epsilon,
                                           model.delta, model.theta, model.phi)

    # Create symbols for forward wavefield, source and receivers
    u = TimeFunction(name='u',
                     grid=model.grid,
                     save=source.nt if save else None,
                     time_order=2,
                     space_order=space_order)
    v = TimeFunction(name='v',
                     grid=model.grid,
                     save=source.nt if save else None,
                     time_order=2,
                     space_order=space_order)
    src = PointSource(name='src',
                      grid=model.grid,
                      time_range=source.time_range,
                      npoint=source.npoint)
    rec = Receiver(name='rec',
                   grid=model.grid,
                   time_range=receiver.time_range,
                   npoint=receiver.npoint)

    # Tilt and azymuth setup
    ang0 = cos(theta)
    ang1 = sin(theta)
    ang2 = 0
    ang3 = 0
    if len(model.shape) == 3:
        ang2 = cos(phi)
        ang3 = sin(phi)

    FD_kernel = kernels[(kernel, len(model.shape))]
    H0, Hz = FD_kernel(u, v, ang0, ang1, ang2, ang3, space_order)

    # Stencils
    s = model.grid.stepping_dim.spacing
    stencilp = 1.0 / (2.0 * m + s * damp) * \
        (4.0 * m * u + (s * damp - 2.0 * m) *
         u.backward + 2.0 * s ** 2 * (epsilon * H0 + delta * Hz))
    stencilr = 1.0 / (2.0 * m + s * damp) * \
        (4.0 * m * v + (s * damp - 2.0 * m) *
         v.backward + 2.0 * s ** 2 * (delta * H0 + Hz))
    first_stencil = Eq(u.forward, stencilp)
    second_stencil = Eq(v.forward, stencilr)
    stencils = [first_stencil, second_stencil]

    # Source and receivers
    stencils += src.inject(field=u.forward,
                           expr=src * dt * dt / m,
                           offset=model.nbpml)
    stencils += src.inject(field=v.forward,
                           expr=src * dt * dt / m,
                           offset=model.nbpml)
    stencils += rec.interpolate(expr=u + v, offset=model.nbpml)

    # Substitute spacing terms to reduce flops
    return Operator(stencils,
                    subs=model.spacing_map,
                    name='ForwardTTI',
                    **kwargs)
示例#43
0
    def forward(self,
                src=None,
                rec=None,
                u=None,
                v=None,
                m=None,
                epsilon=None,
                delta=None,
                theta=None,
                phi=None,
                save=False,
                kernel='centered',
                **kwargs):
        """
        Forward modelling function that creates the necessary
        data objects for running a forward modelling operator.

        :param src: Symbol with time series data for the injected source term
        :param rec: Symbol to store interpolated receiver data (u+v)
        :param u: (Optional) Symbol to store the computed wavefield first component
        :param v: (Optional) Symbol to store the computed wavefield second component
        :param m: (Optional) Symbol for the time-constant square slowness
        :param epsilon: (Optional) Symbol for the time-constant first Thomsen parameter
        :param delta: (Optional) Symbol for the time-constant second Thomsen parameter
        :param theta: (Optional) Symbol for the time-constant Dip angle (radians)
        :param phi: (Optional) Symbol for the time-constant Azimuth angle (radians)
        :param save: Option to store the entire (unrolled) wavefield
        :param kernel: type of discretization, centered or shifted

        :returns: Receiver, wavefield and performance summary
        """

        if kernel == 'staggered':
            time_order = 1
            dims = self.model.space_dimensions
            stagg_u = (-dims[-1])
            stagg_v = (-dims[0],
                       -dims[1]) if self.model.grid.dim == 3 else (-dims[0])
        else:
            time_order = 2
            stagg_u = stagg_v = None
        # Source term is read-only, so re-use the default
        src = src or self.geometry.src
        # Create a new receiver object to store the result
        rec = rec or Receiver(name='rec',
                              grid=self.model.grid,
                              time_range=self.geometry.time_axis,
                              coordinates=self.geometry.rec_positions)

        # Create the forward wavefield if not provided
        if u is None:
            u = TimeFunction(name='u',
                             grid=self.model.grid,
                             staggered=stagg_u,
                             save=self.geometry.nt if save else None,
                             time_order=time_order,
                             space_order=self.space_order)
        # Create the forward wavefield if not provided
        if v is None:
            v = TimeFunction(name='v',
                             grid=self.model.grid,
                             staggered=stagg_v,
                             save=self.geometry.nt if save else None,
                             time_order=time_order,
                             space_order=self.space_order)

        if kernel == 'staggered':
            vx, vz, vy = particle_velocity_fields(self.model, self.space_order)
            kwargs["vx"] = vx
            kwargs["vz"] = vz
            if vy is not None:
                kwargs["vy"] = vy

        # Pick m from model unless explicitly provided
        kwargs.update(
            self.model.physical_params(m=m,
                                       epsilon=epsilon,
                                       delta=delta,
                                       theta=theta,
                                       phi=phi))
        # Execute operator and return wavefield and receiver data
        op = self.op_fwd(kernel, save)
        summary = op.apply(src=src,
                           rec=rec,
                           u=u,
                           v=v,
                           dt=kwargs.pop('dt', self.dt),
                           **kwargs)
        return rec, u, v, summary
示例#44
0
    def test_gradient_equivalence(self, shape, kernel, space_order, preset,
                                  nbl, dtype, tolerance, spacing, tn):
        """ This test asserts that the gradient calculated through the following three
            expressions should match within floating-point precision:
            - grad = sum(-u.dt2 * v)
            - grad = sum(-u * v.dt2)
            - grad = sum(-u.dt * v.dt)

            The computation has the following number of operations:
            u.dt2 (5 ops) * v = 6ops * 500 (nt) ~ 3000 ops ~ 1e4 ops
            Hence tolerances are eps * ops = 1e-4 (sp) and 1e-13 (dp)
        """
        model = demo_model(preset,
                           space_order=space_order,
                           shape=shape,
                           nbl=nbl,
                           dtype=dtype,
                           spacing=spacing)
        m = model.m
        v_true = model.vp
        geometry = setup_geometry(model, tn)
        dt = model.critical_dt
        src = geometry.src
        rec = geometry.rec
        rec_true = geometry.rec
        rec0 = geometry.rec
        s = model.grid.stepping_dim.spacing
        u = TimeFunction(name='u',
                         grid=model.grid,
                         time_order=2,
                         space_order=space_order,
                         save=geometry.nt)

        eqn_fwd = iso_stencil(u, model, kernel)
        src_term = src.inject(field=u.forward, expr=src * s**2 / m)
        rec_term = rec.interpolate(expr=u)

        fwd_op = Operator(eqn_fwd + src_term + rec_term,
                          subs=model.spacing_map,
                          name='Forward')

        v0 = Function(name='v0',
                      grid=model.grid,
                      space_order=space_order,
                      dtype=dtype)
        smooth(v0, model.vp)

        grad_u = Function(name='gradu', grid=model.grid)
        grad_v = Function(name='gradv', grid=model.grid)
        grad_uv = Function(name='graduv', grid=model.grid)
        v = TimeFunction(name='v',
                         grid=model.grid,
                         save=None,
                         time_order=2,
                         space_order=space_order)
        s = model.grid.stepping_dim.spacing

        eqn_adj = iso_stencil(v, model, kernel, forward=False)
        receivers = rec.inject(field=v.backward, expr=rec * s**2 / m)

        gradient_update_v = Eq(grad_v, grad_v - u * v.dt2)
        grad_op_v = Operator(eqn_adj + receivers + [gradient_update_v],
                             subs=model.spacing_map,
                             name='GradientV')

        gradient_update_u = Eq(grad_u, grad_u - u.dt2 * v)
        grad_op_u = Operator(eqn_adj + receivers + [gradient_update_u],
                             subs=model.spacing_map,
                             name='GradientU')

        gradient_update_uv = Eq(grad_uv, grad_uv + u.dt * v.dt)
        grad_op_uv = Operator(eqn_adj + receivers + [gradient_update_uv],
                              subs=model.spacing_map,
                              name='GradientUV')

        fwd_op.apply(dt=dt, vp=v_true, rec=rec_true)
        fwd_op.apply(dt=dt, vp=v0, rec=rec0)

        residual = Receiver(name='rec',
                            grid=model.grid,
                            data=(rec0.data - rec_true.data),
                            time_range=geometry.time_axis,
                            coordinates=geometry.rec_positions,
                            dtype=dtype)
        grad_op_u.apply(dt=dt, vp=v0, rec=residual)

        # Reset v before calling the second operator since the object is shared
        v.data[:] = 0.
        grad_op_v.apply(dt=dt, vp=v0, rec=residual)

        v.data[:] = 0.
        grad_op_uv.apply(dt=dt, vp=v0, rec=residual)

        assert (np.allclose(grad_u.data,
                            grad_v.data,
                            rtol=tolerance,
                            atol=tolerance))
        assert (np.allclose(grad_u.data,
                            grad_uv.data,
                            rtol=tolerance,
                            atol=tolerance))
示例#45
0
#### SOURCE SETTING ####
t0 = 0.  # Simulation starts a t=0
tn = np.ceil(TIME * 1000)  # Simulation last 1 second (1000 ms)
dt = model.critical_dt  # Time step from model grid spacing
time_range = TimeAxis(start=t0, stop=tn, step=dt)
f0 = 0.010  # Source peak frequency is 10Hz (0.010 kHz)
src = RickerSource(name='src', grid=model.grid, f0=f0,
                   npoint=1, time_range=time_range)

src.coordinates.data[0, :] = np.array([SRC_LOC_X, SRC_LOC_Y, SRC_LOC_Z])
#src.show()


#### RECEIVER SETTING ####
rec = Receiver(name='rec', grid=model.grid, npoint=REC_LOC.shape[0], time_range=time_range)
rec.coordinates.data[:,:] = REC_LOC


# ACOUSTIC MODEL

from devito import TimeFunction
u = TimeFunction(name="u", grid=model.grid, time_order=2, space_order=2)
pde = model.m * u.dt2 - u.laplace + model.damp * u.dt

stencil = Eq(u.forward, solve(pde, u.forward))
src_term = src.inject(field=u.forward, expr=src * dt**2 / model.m)
rec_term = rec.interpolate(expr=u.forward)
op = Operator([stencil] + src_term + rec_term, subs=model.spacing_map)
op(time=time_range.num-1, dt=model.critical_dt)
plot_shotrecord(rec.data, model, t0, tn)
示例#46
0
    def test_streaming_complete(self):
        nt = 50
        grid = Grid(shape=(6, 6))
        x, y = grid.dimensions
        time = grid.time_dim
        xi = SubDimension.middle(name='xi',
                                 parent=x,
                                 thickness_left=2,
                                 thickness_right=2)
        yi = SubDimension.middle(name='yi',
                                 parent=y,
                                 thickness_left=2,
                                 thickness_right=2)

        factor = Constant(name='factor', value=5, dtype=np.int32)
        t_sub = ConditionalDimension('t_sub', parent=time, factor=factor)
        save_shift = Constant(name='save_shift', dtype=np.int32)

        u = TimeFunction(name='u', grid=grid, time_order=0)
        u1 = TimeFunction(name='u', grid=grid, time_order=0)
        u2 = TimeFunction(name='u', grid=grid, time_order=0)
        va = TimeFunction(name='va',
                          grid=grid,
                          time_order=0,
                          save=(int(nt // factor.data)),
                          time_dim=t_sub)
        vb = TimeFunction(name='vb',
                          grid=grid,
                          time_order=0,
                          save=(int(nt // factor.data)),
                          time_dim=t_sub)

        for i in range(va.save):
            va.data[i, :] = i
            vb.data[i, :] = i * 2 - 1

        vas = va.subs(t_sub, t_sub - save_shift)
        vasb = va.subs(t_sub, t_sub - 1 - save_shift)
        vasf = va.subs(t_sub, t_sub + 1 - save_shift)

        eqns = [Eq(u.forward, u + (vasb + vas + vasf) * 2. + vb)]

        eqns = [e.xreplace({x: xi, y: yi}) for e in eqns]

        op0 = Operator(eqns, opt='noop')
        op1 = Operator(eqns, opt=('buffering', 'streaming', 'orchestrate'))
        op2 = Operator(eqns,
                       opt=('buffering', 'streaming', 'fuse', 'orchestrate'))

        # Check generated code
        assert len(op1._func_table) == 6
        assert len([i for i in FindSymbols().visit(op1) if i.is_Array]) == 2
        assert len(op2._func_table) == 4
        assert len([i for i in FindSymbols().visit(op2) if i.is_Array]) == 2

        op0.apply(time_m=15, time_M=35, save_shift=0)
        op1.apply(time_m=15, time_M=35, save_shift=0, u=u1)
        op2.apply(time_m=15, time_M=35, save_shift=0, u=u2)

        assert np.all(u.data == u1.data)
        assert np.all(u.data == u2.data)
示例#47
0
def ForwardOperator(model,
                    geometry,
                    space_order=4,
                    save=False,
                    kernel='centered',
                    **kwargs):
    """
    Construct an forward modelling operator in an acoustic media.

    Parameters
    ----------
    model : Model
        Object containing the physical parameters.
    geometry : AcquisitionGeometry
        Geometry object that contains the source (SparseTimeFunction) and
        receivers (SparseTimeFunction) and their position.
    data : ndarray
        IShot() object containing the acquisition geometry and field data.
    time_order : int
        Time discretization order.
    space_order : int
        Space discretization order.
    """

    dt = model.grid.time_dim.spacing
    m = model.m
    time_order = 1 if kernel == 'staggered' else 2
    if kernel == 'staggered':
        dims = model.space_dimensions
        stagg_u = (-dims[-1])
        stagg_v = (-dims[0], -dims[1]) if model.grid.dim == 3 else (-dims[0])
    else:
        stagg_u = stagg_v = None

    # Create symbols for forward wavefield, source and receivers
    u = TimeFunction(name='u',
                     grid=model.grid,
                     staggered=stagg_u,
                     save=geometry.nt if save else None,
                     time_order=time_order,
                     space_order=space_order)
    v = TimeFunction(name='v',
                     grid=model.grid,
                     staggered=stagg_v,
                     save=geometry.nt if save else None,
                     time_order=time_order,
                     space_order=space_order)
    src = PointSource(name='src',
                      grid=model.grid,
                      time_range=geometry.time_axis,
                      npoint=geometry.nsrc)
    rec = Receiver(name='rec',
                   grid=model.grid,
                   time_range=geometry.time_axis,
                   npoint=geometry.nrec)

    # FD kernels of the PDE
    FD_kernel = kernels[(kernel, len(model.shape))]
    stencils = FD_kernel(model, u, v, space_order)

    # Source and receivers
    stencils += src.inject(field=u.forward, expr=src * dt**2 / m)
    stencils += src.inject(field=v.forward, expr=src * dt**2 / m)
    stencils += rec.interpolate(expr=u + v)

    # Substitute spacing terms to reduce flops
    return Operator(stencils,
                    subs=model.spacing_map,
                    name='ForwardTTI',
                    **kwargs)
示例#48
0
assert(len(nnz_sp_source_mask.dimensions) == (len(source_mask.dimensions)-1))

# Note:sparse_source_id is not needed as long as sparse info is kept in mask
# sp_source_id.data[inds[0],inds[1],:] = inds[2][:maxz]

id_dim = Dimension(name='id_dim')
b_dim = Dimension(name='b_dim')

# import pdb; pdb.set_trace()


v_sol = VectorTimeFunction(name='v_sol', grid=grid, space_order=so, time_order=1)
tau_sol = TensorTimeFunction(name='tau_sol', grid=grid, space_order=so, time_order=1)

save_src_fxx = TimeFunction(name='save_src_fxx', shape=(src.shape[0],
                            nzinds[1].shape[0]), dimensions=(src.dimensions[0], id_dim))
save_src_fyy = TimeFunction(name='save_src_fyy', shape=(src.shape[0],
                            nzinds[1].shape[0]), dimensions=(src.dimensions[0], id_dim))
save_src_fzz = TimeFunction(name='save_src_fzz', shape=(src.shape[0],
                            nzinds[1].shape[0]), dimensions=(src.dimensions[0], id_dim))

src_fxx = src.inject(field=tau_sol.forward[0, 0], expr=src)
src_fyy = src.inject(field=tau_sol.forward[1, 1], expr=src)
src_fzz = src.inject(field=tau_sol.forward[2, 2], expr=src)


save_src_fxx_term = src.inject(field=save_src_fxx[src.dimensions[0], source_id], expr=src)
save_src_fyy_term = src.inject(field=save_src_fyy[src.dimensions[0], source_id], expr=src)
save_src_fzz_term = src.inject(field=save_src_fzz[src.dimensions[0], source_id], expr=src)

op1 = Operator(save_src_fxx_term + save_src_fyy_term + save_src_fzz_term)
示例#49
0
    def adjoint(self,
                rec,
                srca=None,
                p=None,
                r=None,
                vp=None,
                epsilon=None,
                delta=None,
                theta=None,
                phi=None,
                save=None,
                kernel='centered',
                **kwargs):
        """
        Adjoint modelling function that creates the necessary
        data objects for running an adjoint modelling operator.

        Parameters
        ----------
        geometry : AcquisitionGeometry
            Geometry object that contains the source (SparseTimeFunction) and
            receivers (SparseTimeFunction) and their position.
        p : TimeFunction, optional
            The computed wavefield first component.
        r : TimeFunction, optional
            The computed wavefield second component.
        vp : Function or float, optional
            The time-constant velocity.
        epsilon : Function or float, optional
            The time-constant first Thomsen parameter.
        delta : Function or float, optional
            The time-constant second Thomsen parameter.
        theta : Function or float, optional
            The time-constant Dip angle (radians).
        phi : Function or float, optional
            The time-constant Azimuth angle (radians).

        Returns
        -------
        Adjoint source, wavefield and performance summary.
        """
        if kernel != 'centered':
            raise ValueError(
                'Only centered kernel is supported for the adjoint')

        time_order = 2
        stagg_p = stagg_r = None
        # Source term is read-only, so re-use the default
        srca = srca or self.geometry.new_src(name='srca', src_type=None)

        # Create the wavefield if not provided
        if p is None:
            p = TimeFunction(name='p',
                             grid=self.model.grid,
                             staggered=stagg_p,
                             time_order=time_order,
                             space_order=self.space_order)
        # Create the wavefield if not provided
        if r is None:
            r = TimeFunction(name='r',
                             grid=self.model.grid,
                             staggered=stagg_r,
                             time_order=time_order,
                             space_order=self.space_order)

        # Pick vp and Thomsen parameters from model unless explicitly provided
        kwargs.update(
            self.model.physical_params(vp=vp,
                                       epsilon=epsilon,
                                       delta=delta,
                                       theta=theta,
                                       phi=phi))
        if self.model.dim < 3:
            kwargs.pop('phi', None)
        # Execute operator and return wavefield and receiver data
        summary = self.op_adj().apply(srca=srca,
                                      rec=rec,
                                      p=p,
                                      r=r,
                                      dt=kwargs.pop('dt', self.dt),
                                      **kwargs)
        return srca, p, r, summary
示例#50
0
def td_born_hessian(model_pert_in, model_pert_out, src_coords, vel, geometry, solver, params, dt=None):
    """
    @Params
    model_pert_in: float32 numpy array of size (Nx, Nz).
    model_pert_out: float32 numpy array of size (Nx, Nz). This will be the output. Assumed to be zeros.
    src_coords: float32 numpy array of size (Ns, 2) with the source coordinates.
    vel: background velocity model object (The object should be the same type as returned by create_model() function)
    geometry: geometry object
    solver: solver object
    params: python dict of parameters

    Note: The receiver coordinates are not needed since it is assumed that they remain fixed for all sources.
    So the receiver information should already be available to the solver object.
    """

    # Get params
    nbl = params["nbl"]
    nx = params["Nx"]
    nz = params["Nz"]
    ns = params["Ns"]
    nr = params["Nr"]
    nt = params["Nt"]
    space_order = params["so"]
    time_order = params["to"]

    offset = nbl + space_order
    if dt is None:
        dt = vel.critical_dt

    # Create padded model perturbation with halo and copy model_pert_in into model_pert_padded
    model_pert_padded = np.zeros((nt, nx + 2 * offset, nz + 2 * offset), dtype=np.float32)
    model_pert_padded[:, offset:nx + offset, offset:nz + offset] = model_pert_in

    # 1. Allocate space for Born modeled data for 1 source
    # 2. Allocate time function to store intermediate wavefields
    born_data = np.zeros((1, nt, nr), dtype=np.float32)
    u1 = TimeFunction(
        name='u',
        grid=vel.grid,
        time_order=time_order,
        space_order=space_order,
        save=nt
    )
    u2 = TimeFunction(
        name='u',
        grid=vel.grid,
        time_order=time_order,
        space_order=space_order,
        save=nt
    )

    # Second derivative filter stencil
    laplacian_filter = np.asarray([1, -2, 1], dtype=np.float32) / (dt ** 2.0)

    # Initialize forward and adjoint operators
    op_fwd = td_born_forward_op(
        model=vel,
        geometry=geometry,
        time_order=time_order,
        space_order=space_order
    )
    op_adjoint = td_born_adjoint_op(
        model=vel,
        geometry=geometry,
        time_order=time_order,
        space_order=space_order
    )

    for i in range(ns):
        # Update source location
        geometry.src_positions[0, :] = src_coords[i, :]

        # Get Born modeled data for the current shot
        _, u0, _ = solver.forward(vp=vel.vp, save=True)
        spim.convolve1d(
            input=u0.data_with_halo,
            weights=laplacian_filter,
            axis=0,
            output=u0.data_with_halo[:, :, :],
            mode='nearest'
        )
        op_fwd.apply(u0=u0, u=u1, dm=model_pert_padded, born_data_rec=born_data[0, :, :], dt=dt)

        # Create adjoint image
        op_adjoint.apply(u=u2, born_data_rec=born_data[0, :, :], dt=dt)

        # Add to model_pert_out
        model_pert_out += \
            u2.data_with_halo[:, offset:nx + offset, offset:nz + offset] * \
            u0.data_with_halo[:, offset:nx + offset, offset:nz + offset]
示例#51
0
def forward(model, save=False, space_order=12, sub=None, norec=False, fs=False):
    clear_cache()

    # Parameters
    s = model.grid.stepping_dim.spacing
    nt = 10
    time_range = TimeAxis(start=0, num=nt, step=1)
    m, damp, epsilon, delta, theta, phi, rho = (model.m, model.damp, model.epsilon,
                                                model.delta, model.theta, model.phi,
                                                model.rho)
    m = m * rho
    # Tilt and azymuth setup
    ang0 = cos(theta)
    ang1 = sin(theta)
    ang2 = cos(phi)
    ang3 = sin(phi)

    # Create the forward wavefield
    if sub is not None and (sub[0] > 1 or sub[1] > 1):
        usave, vsave = subsampled(model, nt, space_order, t_sub=sub[0], space_sub=sub[1])
        u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order)
        v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order)
        eq_save = [Eq(usave, u), Eq(vsave, v)]
    elif save:
        u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order,
                         save=nt)
        v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order,
                         save=nt)
        eq_save = []
    else:
        u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order)
        v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order)
        eq_save = []

    H0, H1 = kernel_zhang_fwd(u, v, ang0, ang1, ang2, ang3, epsilon, delta, rho)

    # Stencils
    s = model.grid.stepping_dim.spacing
    stencilp = damp * (2 * u - damp * u.backward + s**2 / m * H0)
    stencilr = damp * (2 * v - damp * v.backward + s**2 / m * H1)
    first_stencil = Eq(u.forward, stencilp)
    second_stencil = Eq(v.forward, stencilr)
    expression = [first_stencil, second_stencil]

    # Source symbol with input wavelet
    src = Receiver(name='src', grid=model.grid, time_range=time_range, npoint=1)
    src_term = src.inject(field=u.forward, expr=src.dt * s**2 / m)
    src_term += src.inject(field=v.forward, expr=src.dt * s**2 / m)
    expression += src_term

    if fs:
        expression += freesurface(u, model.nbpml)
        expression += freesurface(v, model.nbpml)
    if not norec:
        rec = Receiver(name='rec', grid=model.grid, time_range=time_range, npoint=2)
        expression += rec.interpolate(expr=u + v)

    kwargs = {'dse': 'aggressive', 'dle': 'advanced'}
    op = Operator(expression + eq_save, subs=model.spacing_map,
                  name="forward", **kwargs)

    return op
示例#52
0
def test_tti(shape, space_order):
    nbpml = 10
    ndim = len(shape)
    origin = [0. for _ in shape]
    spacing = [10. for _ in shape]

    # Source location
    location = np.zeros((1, ndim), dtype=np.float32)
    location[0, :-1] = [
        origin[i] + shape[i] * spacing[i] * .5 for i in range(ndim - 1)
    ]
    location[0, -1] = origin[-1] + 2 * spacing[-1]

    # Receivers locations
    receiver_coords = np.zeros((shape[0], ndim), dtype=np.float32)
    receiver_coords[:,
                    0] = np.linspace(0,
                                     origin[0] + (shape[0] - 1) * spacing[0],
                                     num=shape[0])
    receiver_coords[:, 1:] = location[0, 1:]

    # Two layer model for true velocity
    model = demo_model('layers-isotropic',
                       ratio=3,
                       shape=shape,
                       spacing=spacing,
                       nbpml=nbpml,
                       space_order=space_order,
                       epsilon=np.zeros(shape),
                       delta=np.zeros(shape),
                       theta=np.zeros(shape),
                       phi=np.zeros(shape))

    # Define seismic data and parameters
    f0 = .010
    dt = model.critical_dt
    t0 = 0.0
    tn = 350.0
    time_range = TimeAxis(start=t0, stop=tn, step=dt)
    nt = time_range.num

    last = (nt - 2) % 3
    indlast = [(last + 1) % 3, last % 3, (last - 1) % 3]

    # Adjoint test
    source = RickerSource(name='src',
                          grid=model.grid,
                          f0=f0,
                          time_range=time_range)
    receiver = Receiver(name='rec',
                        grid=model.grid,
                        time_range=time_range,
                        coordinates=receiver_coords)
    acoustic = AcousticWaveSolver(model,
                                  source=source,
                                  receiver=receiver,
                                  time_order=2,
                                  space_order=space_order)
    rec, u1, _ = acoustic.forward(save=False)

    tn = 100.0
    time_range = TimeAxis(start=t0, stop=tn, step=dt)
    nt = time_range.num

    # Source geometry
    time_series = np.zeros((nt, 1))

    source = PointSource(name='src',
                         grid=model.grid,
                         time_range=time_range,
                         data=time_series,
                         coordinates=location)
    receiver = Receiver(name='rec',
                        grid=model.grid,
                        time_range=time_range,
                        coordinates=receiver_coords)
    acoustic = AcousticWaveSolver(model,
                                  source=source,
                                  receiver=receiver,
                                  time_order=2,
                                  space_order=space_order)

    solver_tti = AnisotropicWaveSolver(model,
                                       source=source,
                                       receiver=receiver,
                                       time_order=2,
                                       space_order=space_order)

    # Create new wavefield object restart forward computation
    u = TimeFunction(name='u',
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order,
                     dtype=model.dtype)
    u.data[0:3, :] = u1.data[indlast, :]
    rec, _, _ = acoustic.forward(save=False, u=u)

    utti = TimeFunction(name='u',
                        grid=model.grid,
                        time_order=2,
                        space_order=space_order,
                        dtype=model.dtype)
    vtti = TimeFunction(name='v',
                        grid=model.grid,
                        time_order=2,
                        space_order=space_order,
                        dtype=model.dtype)
    utti.data[0:3, :] = u1.data[indlast, :]
    vtti.data[0:3, :] = u1.data[indlast, :]
    rec_tti, u_tti, v_tti, _ = solver_tti.forward(u=utti, v=vtti)

    res = linalg.norm(
        u.data.reshape(-1) - .5 * u_tti.data.reshape(-1) -
        .5 * v_tti.data.reshape(-1))
    res /= linalg.norm(u.data.reshape(-1))

    log("Difference between acoustic and TTI with all coefficients to 0 %f" %
        res)
    assert np.isclose(res, 0.0, atol=1e-4)
示例#53
0
def test_cache_blocking_imperfect_nest(blockinner):
    """
    Test that a non-perfect Iteration nest is blocked correctly.
    """
    grid = Grid(shape=(4, 4, 4), dtype=np.float64)

    u = TimeFunction(name='u', grid=grid, space_order=2)
    v = TimeFunction(name='v', grid=grid, space_order=2)

    eqns = [Eq(u.forward, v.laplace),
            Eq(v.forward, u.forward.dz)]

    op0 = Operator(eqns, opt='noop')
    op1 = Operator(eqns, opt=('advanced', {'blockinner': blockinner}))

    # First, check the generated code
    trees = retrieve_iteration_tree(op1._func_table['bf0'].root)
    assert len(trees) == 2
    assert len(trees[0]) == len(trees[1])
    assert all(i is j for i, j in zip(trees[0][:4], trees[1][:4]))
    assert trees[0][4] is not trees[1][4]
    assert trees[0].root.dim.is_Incr
    assert trees[1].root.dim.is_Incr
    assert op1.parameters[7] is trees[0][0].step
    assert op1.parameters[10] is trees[0][1].step

    u.data[:] = 0.2
    v.data[:] = 1.5
    op0(time_M=0)

    u1 = TimeFunction(name='u1', grid=grid, space_order=2)
    v1 = TimeFunction(name='v1', grid=grid, space_order=2)

    u1.data[:] = 0.2
    v1.data[:] = 1.5
    op1(u=u1, v=v1, time_M=0)

    assert np.all(u.data == u1.data)
    assert np.all(v.data == v1.data)
示例#54
0
    def jacobian_adjoint(self,
                         rec,
                         u,
                         v=None,
                         grad=None,
                         precon=None,
                         vp=None,
                         checkpointing=False,
                         **kwargs):
        """
        Gradient modelling function for computing the adjoint of the
        Linearized Born modelling function, ie. the action of the
        Jacobian adjoint on an input data.

        Parameters
        ----------
        rec : SparseTimeFunction
            Receiver data.
        u : TimeFunction
            Full wavefield `u` (created with save=True).
        v : TimeFunction, optional
            Stores the computed wavefield.
        grad : Function, optional
            Stores the gradient field.
        vp : Function or float, optional
            The time-constant velocity.

        Returns
        -------
        Gradient field and performance summary.
        """
        dt = kwargs.pop('dt', self.dt)
        # Gradient symbol
        grad = grad or Function(name='grad', grid=self.model.grid)
        # Create the forward wavefield
        v = v or TimeFunction(name='v',
                              grid=self.model.grid,
                              time_order=2,
                              space_order=self.space_order)

        # Pick vp from model unless explicitly provided
        vp = vp or self.model.vp

        if checkpointing:
            u = TimeFunction(name='u',
                             grid=self.model.grid,
                             time_order=2,
                             space_order=self.space_order)
            cp = DevitoCheckpoint([u])
            n_checkpoints = None
            wrap_fw = CheckpointOperator(self.op_fwd(save=False),
                                         src=self.geometry.src,
                                         u=u,
                                         vp=vp,
                                         dt=dt)
            wrap_rev = CheckpointOperator(self.op_grad(save=False),
                                          u=u,
                                          v=v,
                                          vp=vp,
                                          rec=rec,
                                          dt=dt,
                                          grad=grad)

            # Run forward
            wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints,
                           rec.data.shape[0] - 2)
            wrp.apply_forward()
            summary = wrp.apply_reverse()
        else:
            if precon is not None:
                precon = precon  #don't know if this is needded but I'll just follow style
                summary = self.op_grad_precon().apply(rec=rec,
                                                      grad=grad,
                                                      precon=precon,
                                                      v=v,
                                                      u=u,
                                                      vp=vp,
                                                      dt=dt,
                                                      **kwargs)
            else:
                summary = self.op_grad().apply(rec=rec,
                                               grad=grad,
                                               v=v,
                                               u=u,
                                               vp=vp,
                                               dt=dt,
                                               **kwargs)
        return grad, summary
# dt is defined using Courant condition (c = 1)
# dt = 0.2*(L/(shape[0]-1)) # Timestep is half critical dt (0.0025)
# dt = 5e-4
dt = 0.2 * L / (l - 1)
t_end = L  # Standing wave will cycle twice in time L
ns = int(t_end / dt)  # Number of timesteps = total time/timestep size

grid = Grid(shape=(l), extent=(L))
time = grid.time_dim
x = grid.dimensions[0]

# Set up function and stencil
u_dev = TimeFunction(name="u_dev",
                     grid=grid,
                     space_order=so_dev,
                     time_order=to_dev,
                     save=ns + 1)


# Functions for initalizing standing square wave
def b_n_inner(
        x,
        n):  # Inner part of b_n to allow for scipy.integrate.quad to be used
    return square_init(x) * sin(2. * n * pi * x / L)


def b_n_calc(n):
    return (4. / L) * quad(b_n_inner, 0, L / 2., args=(n))[0]