def __init__(self, x, y, w=None, bbox=[None] * 2, k=3, s=None): """ Input: x,y - 1-d sequences of data points (x must be in strictly ascending order) Optional input: w - positive 1-d sequence of weights bbox - 2-sequence specifying the boundary of the approximation interval. By default, bbox=[x[0],x[-1]] k=3 - degree of the univariate spline. s - positive smoothing factor defined for estimation condition: sum((w[i]*(y[i]-s(x[i])))**2,axis=0) <= s Default s=len(w) which should be a good value if 1/w[i] is an estimate of the standard deviation of y[i]. """ #_data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0], xe=bbox[1], s=s) if data[-1] == 1: # nest too small, setting to maximum bound data = self._reset_nest(data) self._data = data self._reset_class()
def __init__(self, x, y, w=None, bbox = [None]*2, k=3, s=None): """ Input: x,y - 1-d sequences of data points (x must be in strictly ascending order) Optional input: w - positive 1-d sequence of weights bbox - 2-sequence specifying the boundary of the approximation interval. By default, bbox=[x[0],x[-1]] k=3 - degree of the univariate spline. s - positive smoothing factor defined for estimation condition: sum((w[i]*(y[i]-s(x[i])))**2,axis=0) <= s Default s=len(w) which should be a good value if 1/w[i] is an estimate of the standard deviation of y[i]. """ #_data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier data = dfitpack.fpcurf0(x,y,k,w=w, xb=bbox[0],xe=bbox[1],s=s) if data[-1]==1: # nest too small, setting to maximum bound data = self._reset_nest(data) self._data = data self._reset_class()
def __init__(self, x, y, w=None, bbox=[None] * 2, k=3): """ Input: x,y - 1-d sequences of data points (x must be in strictly ascending order) Optional input: w - positive 1-d sequence of weights bbox - 2-sequence specifying the boundary of the approximation interval. By default, bbox=[x[0],x[-1]] k=3 - degree of the univariate spline. """ # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0], xe=bbox[1], s=0) self._reset_class()
def __init__(self, x, y, w=None, bbox = [None]*2, k=3): """ Input: x,y - 1-d sequences of data points (x must be in strictly ascending order) Optional input: w - positive 1-d sequence of weights bbox - 2-sequence specifying the boundary of the approximation interval. By default, bbox=[x[0],x[-1]] k=3 - degree of the univariate spline. """ #_data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier self._data = dfitpack.fpcurf0(x,y,k,w=w, xb=bbox[0],xe=bbox[1],s=0) self._reset_class()