def test_read_to_dict_sample_4(backend: PostgresBackend): """Is the full dataset correctly read?""" reset_test_table(True) df = backend.read_to_dict("testdb", sample=4) df = pd.DataFrame.from_records(df) SampleDataSchema.validate(df) assert len(df) == 4
def test_read_with_row_filter(df_type, backend: PostgresBackend, filter_expr, expected_data): """Is the full dataset correctly read?""" reset_test_table(True) if df_type == pd.DataFrame: df = backend.read_to_pandas("testdb", row_filter=filter_expr) elif df_type == dict: df = backend.read_to_dict("testdb", row_filter=filter_expr) expected_data.assert_correct_and_equal(df)
def test_read_to_dict_drop_duplicates(backend: PostgresBackend): """Is the full dataset correctly read?""" reset_test_table(True) df = backend.read_to_dict("testdb", drop_duplicates=True) sample_data = SampleDataSet() sample_data.first_rows(len(sample_data) - 1).assert_correct_and_equal(df)
def test_read_to_dict_top_3(backend: PostgresBackend): """Is the full dataset correctly read?""" reset_test_table(True) df = backend.read_to_dict("testdb", limit=3) SampleDataSet().first_rows(3).assert_correct_and_equal(df)
def test_read_to_dict_columns(backend: PostgresBackend): """Is the full dataset correctly read?""" reset_test_table(True) df = backend.read_to_dict("testdb", columns=["col_int", "col_string"]) SampleDataSet().select_columns( columns=["col_int", "col_string"]).assert_correct_and_equal(df)
def test_read_to_dict_empty_table(backend: PostgresBackend): """Try reading an empty table and see if the column names are fetched""" df = backend.read_to_dict("empty") assert df == dict(col1=[], col2=[])