示例#1
0
文件: client.py 项目: ydwu4/dgl-hack
def start_client(args):
    """Start client
    """
    server_namebook = dgl.contrib.read_ip_config(filename=args.ip_config)

    my_client = KVClient(server_namebook=server_namebook)

    my_client.connect()

    if my_client.get_id() % args.num_worker == 0:
        my_client.set_partition_book(name='entity_embed',
                                     partition_book=partition)
    else:
        my_client.set_partition_book(name='entity_embed')

    my_client.print()

    my_client.barrier()

    print("send request...")

    for i in range(100):
        for i in range(4):
            my_client.push(name='entity_embed',
                           id_tensor=ID[i],
                           data_tensor=DATA[i])

    my_client.barrier()

    if my_client.get_id() % args.num_worker == 0:
        res = my_client.pull(name='entity_embed',
                             id_tensor=mx.nd.array([0, 1, 2, 3, 4, 5, 6, 7],
                                                   dtype='int64'))
        print(res)

    my_client.barrier()

    for i in range(100):
        my_client.push(name='entity_embed',
                       id_tensor=ID[my_client.get_machine_id()],
                       data_tensor=mx.nd.array([[0., 0., 0.], [0., 0., 0.]]))

    my_client.barrier()

    if my_client.get_id() % args.num_worker == 0:
        res = my_client.pull(name='entity_embed',
                             id_tensor=mx.nd.array([0, 1, 2, 3, 4, 5, 6, 7],
                                                   dtype='int64'))
        print(res)

    if my_client.get_id() == 0:
        my_client.shut_down()
示例#2
0
def start_client(args):
    """Start client
    """
    server_namebook = dgl.contrib.read_ip_config(filename=args.ip_config)

    my_client = KVClient(server_namebook=server_namebook)

    my_client.connect()

    my_client.print()

    my_client.barrier()

    local_start = num_entries * my_client.get_machine_id()
    local_end = num_entries * (my_client.get_machine_id() + 1)
    local_range = np.arange(local_start, local_end)
    id_list = []
    for i in range(10000):
        ids = np.random.choice(local_range, args.batch_size)
        id_list.append(F.tensor(ids))

    print("Pull from local...")
    num_bytes = 0
    start = time.time()
    for ids in id_list:
        tmp = my_client.pull(name='entity_embed', id_tensor=ids)
        ndim = tmp.shape[1]
        num_bytes += np.prod(tmp.shape) * 4
    print("Total time: %.3f, #bytes: %.3f GB" %
          (time.time() - start, num_bytes / 1000 / 1000 / 1000))

    my_client.barrier()

    arr = F.zeros((num_entries, ndim), F.float32, F.cpu())
    print('Slice from a tensor...')
    num_bytes = 0
    start = time.time()
    for ids in id_list:
        tmp = arr[ids]
        num_bytes += np.prod(tmp.shape) * 4
    print("Total time: %.3f, #bytes: %.3f GB" %
          (time.time() - start, num_bytes / 1000 / 1000 / 1000))

    print("Pull from remote...")
    if local_start == 0:
        remote_range = np.arange(local_end, num_entries * args.num_servers)
    elif local_end == num_entries * args.num_servers:
        remote_range = np.arange(0, local_start)
    else:
        range1 = np.arange(0, local_start)
        range2 = np.arange(local_end, num_entries * args.num_servers)
        remote_range = np.concatenate((range1, range2))
    id_list = []
    for i in range(1000):
        ids = np.random.choice(remote_range, args.batch_size)
        id_list.append(F.tensor(ids))

    num_bytes = 0
    start = time.time()
    for ids in id_list:
        tmp = my_client.pull(name='entity_embed', id_tensor=ids)
        num_bytes += np.prod(tmp.shape) * 4
    print("Total time: %.3f, #bytes: %.3f GB" %
          (time.time() - start, num_bytes / 1000 / 1000 / 1000))

    my_client.barrier()

    if my_client.get_id() == 0:
        my_client.shut_down()