示例#1
0
    def generate_depth_map(self, sample_idx, datum_idx, filename):

        # Generate depth filename
        filename = '{}/{}.npz'.format(
            os.path.dirname(self.path), filename.format('depth/{}'.format(self.depth_type)))
        # Load and return if exists
        if os.path.exists(filename):
            return np.load(filename)['depth']
        # Otherwise, create, save and return
        else:
            # Get pointcloud
            scene_idx, sample_idx_in_scene, _ = self.dataset.dataset_item_index[sample_idx]
            pc_datum_idx_in_sample = self.dataset.get_datum_index_for_datum_name(
                scene_idx, sample_idx_in_scene, self.depth_type)
            pc_datum_data = self.dataset.get_point_cloud_from_datum(
                scene_idx, sample_idx_in_scene, pc_datum_idx_in_sample)
            # Create camera
            camera_rgb = self.get_current('rgb', datum_idx)
            camera_pose = self.get_current('pose', datum_idx)
            camera_intrinsics = self.get_current('intrinsics', datum_idx)
            camera = Camera(K=camera_intrinsics, p_cw=camera_pose.inverse())
            # Generate depth map
            world_points = pc_datum_data['pose'] * pc_datum_data['point_cloud']
            depth = generate_depth_map(camera, world_points, camera_rgb.size[::-1])
            # Save depth map
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            np.savez_compressed(filename, depth=depth)
            # Return depth map
            return depth
示例#2
0
def camera():
    k = np.float32([
        [.5, 0, 2],
        [0, .25, 3],
        [0, 0, 1],
    ])
    d = np.zeros(shape=(5, ))
    return Camera(K=k, D=d)
示例#3
0
def render_pointcloud_on_image(img,
                               camera,
                               Xw,
                               cmap=MPL_JET_CMAP,
                               norm_depth=10,
                               dilation=3):
    """Render pointcloud on image.

    Parameters
    ----------
    img: np.ndarray
        Image to render bounding boxes onto.

    camera: Camera
        Camera object with appropriately set extrinsics wrt world.

    Xw: np.ndarray (N x 3)
        3D point cloud (x, y, z) in the world coordinate.

    cmap: matplotlib.colors.Colormap
        Colormap used for visualizing the inverse depth.

    norm_depth: float, default: 10
        Depth value to normalize (inverse) pointcloud depths in color mapping.

    dilation: int, default: 3
        Dilation factor applied on each point.

    Returns
    -------
    img: np.array
        Image with rendered point cloud.
    """
    # Move point cloud to the camera's (C) reference frame from the world (W)
    Xc = camera.p_cw * Xw
    # Project the points as if they were in the camera's frame of reference
    uv = Camera(K=camera.K).project(Xc)
    # Colorize the point cloud based on depth
    z_c = Xc[:, 2]
    zinv_c = 1. / (z_c + 1e-6)
    zinv_c *= norm_depth
    colors = (cmap(np.clip(zinv_c, 0., 1.0))[:, :3] * 255).astype(np.uint8)

    # Create an empty image to overlay
    H, W, _ = img.shape
    vis = np.zeros_like(img)
    in_view = np.logical_and.reduce([(uv >= 0).all(axis=1), uv[:, 0] < W,
                                     uv[:, 1] < H, z_c > 0])
    uv, colors = uv[in_view].astype(int), colors[in_view]
    vis[uv[:, 1], uv[:, 0]] = colors  # pylint: disable=unsupported-assignment-operation

    # Dilate visualization so that they render clearly
    vis = cv2.dilate(vis, np.ones((dilation, dilation)))
    mask = (vis > 0).astype(np.uint8)
    return (1 - mask) * img + mask * vis
示例#4
0
def get_depth_from_point_cloud(dataset, scene_idx, sample_idx_in_scene,
                               cam_datum_idx_in_sample,
                               pc_datum_idx_in_sample):
    """Generate the depth map in the camera view using the provided point cloud
    datum within the sample.

    Parameters
    ----------
    dataset: dgp.dataset.BaseDataset
        Inherited base dataset to augment with depth data.

    scene_idx: int
        Index of the scene.

    sample_idx_in_scene: int
        Index of the sample within the scene at scene_idx.

    cam_datum_idx_in_sample: int
        Index of the camera datum within the sample.

    pc_datum_idx_in_sample: int
        Index of the point cloud datum within the sample.

    Returns
    -------
    depth: np.ndarray
        Depth map from the camera's viewpoint.
    """
    # Get point cloud datum and load it
    pc_datum = dataset.get_datum(scene_idx, sample_idx_in_scene,
                                 pc_datum_idx_in_sample)
    pc_datum_type = pc_datum.datum.WhichOneof('datum_oneof')
    assert pc_datum_type == 'point_cloud', 'Depth cannot be generated from {} '.format(
        pc_datum_type)
    pc_datum_data = dataset.get_point_cloud_from_datum(scene_idx,
                                                       sample_idx_in_scene,
                                                       pc_datum_idx_in_sample)
    X_W = pc_datum_data['pose'] * pc_datum_data['point_cloud']
    # Get target camera datum for projection
    cam_datum = dataset.get_datum(scene_idx, sample_idx_in_scene,
                                  cam_datum_idx_in_sample)
    cam_datum_type = cam_datum.datum.WhichOneof('datum_oneof')
    assert cam_datum_type == 'image', 'Depth cannot be projected onto {} '.format(
        cam_datum_type)
    cam_datum_data = dataset.get_image_from_datum(scene_idx,
                                                  sample_idx_in_scene,
                                                  cam_datum_idx_in_sample)
    p_WC = cam_datum_data['pose']
    camera = Camera(K=cam_datum_data['intrinsics'], p_cw=p_WC.inverse())
    (W, H) = cam_datum_data['rgb'].size[:2]
    return generate_depth_map(camera, X_W, (H, W))
示例#5
0
    def generate_depth_map(self, sample_idx, datum_idx, filename):
        """
        Generates the depth map for a camera by projecting LiDAR information.
        It also caches the depth map following DGP folder structure, so it's not recalculated

        Parameters
        ----------
        sample_idx : int
            sample index
        datum_idx : int
            Datum index
        filename :
            Filename used for loading / saving

        Returns
        -------
        depth : np.array [H, W]
            Depth map for that datum in that sample
        """
        # Generate depth filename
        filename = '{}/{}.npz'.format(
            os.path.dirname(self.path),
            filename.format('depth/{}'.format(self.depth_type)))
        # Load and return if exists
        if os.path.exists(filename):
            return np.load(filename, allow_pickle=True)['depth']
        # Otherwise, create, save and return
        else:
            # Get pointcloud
            scene_idx, sample_idx_in_scene, _ = self.dataset.dataset_item_index[
                sample_idx]
            pc_datum_idx_in_sample = self.dataset.get_datum_index_for_datum_name(
                scene_idx, sample_idx_in_scene, self.depth_type)
            pc_datum_data = self.dataset.get_point_cloud_from_datum(
                scene_idx, sample_idx_in_scene, pc_datum_idx_in_sample)
            # Create camera
            camera_rgb = self.get_current('rgb', datum_idx)
            camera_pose = self.get_current('pose', datum_idx)
            camera_intrinsics = self.get_current('intrinsics', datum_idx)
            camera = Camera(K=camera_intrinsics, p_cw=camera_pose.inverse())
            # Generate depth map
            world_points = pc_datum_data['pose'] * pc_datum_data['point_cloud']
            depth = generate_depth_map(camera, world_points,
                                       camera_rgb.size[::-1])
            # Save depth map
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            np.savez_compressed(filename, depth=depth)
            # Return depth map
            return depth
示例#6
0
def render_pointcloud_on_image(img, camera, Xw, colormap='jet', percentile=80):
    """Render pointcloud on image.

    Parameters
    ----------
    img: np.ndarray
        Image to render bounding boxes onto.

    camera: Camera
        Camera object with appropriately set extrinsics wrt world.

    Xw: np.ndarray (N x 3)
        3D point cloud (x, y, z) in the world coordinate.

    colormap: str, default: jet
        Colormap used for visualizing the inverse depth.

    percentile: float, default: 80
        Use this percentile to normalize the inverse depth.

    Returns
    -------
    img: np.array
        Image with rendered point cloud.
    """
    cmap = get_cmap('jet')
    # Move point cloud to the camera's (C) reference frame from the world (W)
    Xc = camera.p_cw * Xw
    # Project the points as if they were in the camera's frame of reference
    uv = Camera(K=camera.K).project(Xc)
    # Colorize the point cloud based on depth
    z_c = Xc[:, 2]
    zinv_c = 1. / (z_c + 1e-6)
    zinv_c /= np.percentile(zinv_c, percentile)
    colors = (cmap(np.clip(zinv_c, 0., 1.0))[:, :3] * 255).astype(np.uint8)

    # Create an empty image to overlay
    H, W, _ = img.shape
    vis = np.zeros_like(img)
    in_view = np.logical_and.reduce([(uv >= 0).all(axis=1), uv[:, 0] < W,
                                     uv[:, 1] < H, z_c > 0])
    uv, colors = uv[in_view].astype(int), colors[in_view]
    vis[uv[:, 1], uv[:, 0]] = colors

    # Dilate visualization so that they render clearly
    vis = cv2.dilate(vis, np.ones((5, 5)))
    return np.maximum(vis, img)
示例#7
0
def camera2():
    return Camera.from_params(.5, .25, 2, 3)
示例#8
0
def render_pointcloud_and_box_onto_rgb(camera_datums,
                                       pts_world_coord=None,
                                       id_to_name=None):
    """Project LiDAR point cloud to 2D rgb and render projected points overlapping on top of rgb.

    Parameters
    ----------
    camera_datums: list of OrderedDict

        "datum_name": str
            Sensor name from which the data was collected.

        "rgb": list of PIL.Image (mode=RGB)
            List of image in RGB format. List is in order of `selected_datums` that
            are images.

        "intrinsics": np.ndarray
            Camera intrinsics.

        "pose": Pose
            Ego pose of datum.

        "bounding_box_2d": np.ndarray dtype=np.float32
            Tensor containing bounding boxes for this sample
            (x, y, w, h) in absolute pixel coordinates.

        "bounding_box_3d": list of BoundingBox3D
            3D Bounding boxes for this sample specified in this point cloud
            sensor's reference frame. (i.e. this provides the bounding box
            (B) in the sensor's (S) reference frame `box_SB`).

    pts_world_coord: numpy.ndarray, default: None
        Accumulated point clouds from all lidar sensors in a same single coordinate frame.

    id_to_name: OrderedDict, default: None
        Object class id (int) to name (str).

    Returns
    -------
    images_2d: dict
        Image Datum name to RGB image with bounding boxes.

    images_3d: dict
        Image Datum name to point clouds and bounding boxes overlapping on top of the RGB image.

    """
    images_2d, images_3d = {}, {}
    for d_cam in camera_datums:
        # Ensure the datum names are consistent with the query
        # Render the image
        img = np.array(d_cam['rgb']).copy()
        vis_2d = print_status(img, d_cam['datum_name'])
        vis_3d = vis_2d.copy()

        # Render 3d annotations in the camera
        cam_identity = Camera(K=d_cam['intrinsics'])

        # Only render bounding boxes if available
        if 'bounding_box_3d' in d_cam:
            for bbox3d in d_cam['bounding_box_3d']:
                vis_2d = bbox3d.render_on_image(cam_identity, vis_2d)

        # Render 2d annotations
        if 'bounding_box_2d' in d_cam:
            classes = [id_to_name[cid]
                       for cid in d_cam['class_ids']] if id_to_name else None
            vis_3d = render_bbox2d_on_image(vis_3d,
                                            d_cam['bounding_box_2d'],
                                            texts=classes)

        # Render 3d points into image
        if pts_world_coord is not None:
            # Move points in sensor (S) frame to the camera (C) frame.
            p_WC = d_cam['pose']
            pts_camera_coord = p_WC.inverse() * pts_world_coord
            vis_3d = render_pointcloud_on_image(vis_3d, cam_identity,
                                                pts_camera_coord)
        images_2d[d_cam['datum_name']] = vis_2d
        images_3d[d_cam['datum_name']] = vis_3d

    return images_2d, images_3d
示例#9
0
def render_radar_pointcloud_on_image(img,
                                     camera,
                                     point_cloud,
                                     cmap=MPL_JET_CMAP,
                                     norm_depth=10,
                                     velocity=None,
                                     velocity_scale=1,
                                     velocity_max_pix=.05):
    """Render radar pointcloud on image.

    Parameters
    ----------
    img: np.ndarray
        Image to render bounding boxes onto.

    camera: Camera
        Camera object with appropriately set extrinsics wrt world.

    Xw: np.ndarray (N x 8)
        point cloud in spherical coordinates of radar sensor frame

    cmap: matplotlib.colors.Colormap
        Colormap used for visualizing the inverse depth.

    norm_depth: float, default: 10
        Depth value to normalize (inverse) pointcloud depths in color mapping.

    velocity: numpy array with shape (N,3), default None
        velocity vector of points

    velocity_scale: float
            factor to scale velocity vector by

    velocity_max_pix: float
        Maximum length of velocity vector rendering in percent of image width

    Returns
    -------
    img: np.array
        Image with rendered point cloud.
    """
    if len(point_cloud) == 0:
        return img

    Xc = camera.p_cw * point_cloud
    # Project the points as if they were in the camera's frame of reference
    uv = Camera(K=camera.K).project(Xc)
    # Colorize the point cloud based on depth
    z_c = Xc[:, 2]
    zinv_c = 1. / (z_c + 1e-6)
    zinv_c *= norm_depth
    colors = (cmap(np.clip(zinv_c, 0., 1.0))[:, :3] * 255)

    # Create an empty image to overlay
    H, W, _ = img.shape
    in_view = np.logical_and.reduce([(uv >= 0).all(axis=1), uv[:, 0] < W,
                                     uv[:, 1] < H, z_c > 0])

    uv, colors = uv[in_view].astype(int), colors[in_view]

    for row, color in zip(uv, colors):
        cx, cy = row
        cv2.circle(img, (cx, cy), 10, color, thickness=3)

    def clip_norm(v, x):
        M = np.linalg.norm(v)
        if M == 0:
            return v
        return np.clip(M, 0, x) * v / M

    if velocity is not None:
        tail = point_cloud + velocity_scale * velocity
        uv_tail = Camera(K=camera.K).project(camera.p_cw * tail)
        uv_tail = uv_tail[in_view].astype(int)
        for row, row_tail, color in zip(uv, uv_tail, colors):
            v_2d = row_tail - row
            v_2d = clip_norm(v_2d, velocity_max_pix * W)
            cx, cy = row
            cx2, cy2 = row + v_2d.astype(np.int)
            cx2 = np.clip(cx2, 0, W - 1)
            cy2 = np.clip(cy2, 0, H - 1)
            cv2.arrowedLine(img, (cx, cy), (cx2, cy2),
                            color,
                            thickness=2,
                            line_type=cv2.LINE_AA)

    return img
示例#10
0
def visualize_cameras(
    camera_datums,
    id_to_name,
    lidar_datums=None,
    rgb_resize_factor=1.0,
    # `BoundingBox3D` kwargs
    bbox3d_font_scale=1.0,
    bbox3d_line_thickness=4,
    # `render_pointcloud_on_image` kwargs
    pc_rgb_cmap=MPL_JET_CMAP,
    pc_rgb_norm_depth=10,
    pc_rgb_dilation=3,
    radar_datums=None,
):
    """Create camera visualization that shows 3D bounding boxes, and optionally projected pointcloud.
    Parameters
    ----------
    camera_datums: List[OrderedDict], default: None
        List of camera datums as a dictionary.
    id_to_name: OrderedDict, default: None
        Mapping from class IDs to class names.
    lidar_datums: List[OrderedDict] or None, default: None
        List of lidar datums as a dictionary. If given, then draw pointcloud contained in all datums.
    rgb_resize_factor: float, default: 1.0
        Resize images by this factor before tiling them into a single panel.
    bbox3d_font_scale: float, default: 1.0
        Font scale used for text labels.
    bbox3d_line_thickness: int, default: 4
        Thickness of lines used for drawing 3D bounding boxes.
    pc_rgb_norm_depth: int, default: 10
        Depth value to normalize (inverse) pointcloud depths in color mapping.
    pc_rgb_dilation: int, default: 3
        Dilation factor applied on each point in pointcloud.
    radar_datums: List[OrderedDict], default: None
        List of radar datums to visualize
    Returns
    -------
    rgb_viz: List[np.ndarray]
        List of camera visualization images, one for each camera.
    """
    rgb_viz = []
    for cam_datum in camera_datums:
        rgb = np.array(cam_datum['rgb']).copy()

        if lidar_datums is not None:
            # 1. Render pointcloud
            for lidar_datum in lidar_datums:
                p_LC = cam_datum['extrinsics'].inverse() * lidar_datum[
                    'extrinsics']  # lidar -> body -> camera
                rgb = render_pointcloud_on_image(rgb,
                                                 Camera(
                                                     K=cam_datum['intrinsics'],
                                                     p_cw=p_LC),
                                                 lidar_datum['point_cloud'],
                                                 cmap=pc_rgb_cmap,
                                                 norm_depth=pc_rgb_norm_depth,
                                                 dilation=pc_rgb_dilation)

        if radar_datums is not None:
            # 2. Render radar pointcloud
            for radar_datum in radar_datums:
                p_LC = cam_datum['extrinsics'].inverse() * radar_datum[
                    'extrinsics']  # radar -> body -> camera
                rgb = render_radar_pointcloud_on_image(
                    rgb,
                    Camera(K=cam_datum['intrinsics'], p_cw=p_LC),
                    radar_datum['point_cloud'],
                    norm_depth=pc_rgb_norm_depth,
                    velocity=radar_datum['velocity'])

        # 3. Render 3D bboxes
        # for bbox3d, class_id in zip(cam_datum['bounding_box_3d'], cam_datum['class_ids']):
        if 'bounding_box_3d' in cam_datum:
            for bbox3d in cam_datum['bounding_box_3d']:
                class_name = id_to_name[bbox3d.class_id]
                rgb = bbox3d.render(
                    rgb,
                    Camera(K=cam_datum['intrinsics']),
                    line_thickness=bbox3d_line_thickness,
                    class_name=class_name,
                    font_scale=bbox3d_font_scale,
                )

        rgb_viz.append(
            cv2.resize(rgb, None, fx=rgb_resize_factor, fy=rgb_resize_factor))

    return rgb_viz