if m == 0:
                                    return graph

            #For each node u, we add a node to k randomly chosen nodes
            weak_ties = random.choice(k)
            while weak_ties > 0:
                xt = random.randint(0, line-1)
                yt = random.randint(0, line-1)
                if xt*line+yt > n-1:
                    continue
                if xt != i and yt != j and xt*line+yt not in graph[i*line+j] and random.random() <= (1/(euclidean_distance((xt, yt), (i,j))**q)):
                    graph[i*line+j].add(xt*line+yt)
                    m -= 1
                    weak_ties -= 1
                    if m == 0:
                        return graph
    return graph


if __name__ == '__main__':
    EXECUTIONS = 3
    NODES = 7056
    # edges = random.randint(75000, 125000)
    edges = [75000, 100000, 125000]
    radius = 2
    weak_ties = [i*5 for i in xrange(0, 3)]
    seed = 100
    for i in xrange(EXECUTIONS):
        g = GenWSGridGraph(NODES, edges[i], radius, weak_ties)
        print 'Edges %d\tAverage Clustering = %f' % (countEdges(g),ac(und(g)))
for i in xrange(100):

    NODES = 7115
    edges = random.randint(75000, 125000)
    radius = 2
    weak_ties = [i * 5 for i in xrange(0, 4)]
    seed = 100

    # ##Create a Watts-Strogatz 2D direct graph

    # In[4]:

    g = standardize(WS2D(NODES, edges, radius, weak_ties))
    print '# Edges %d\tAverage Clustering = %f' % (countEdges(g) * 2, ac(
        und(g)))
    fi(g)  # Fill incoming edges

    sys.stdout.flush()

    # ## Execute centrality measures

    # In[5]:

    print '# Page Rank execution...'
    pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-3)
    print '#', iterations, ' iterations. Error:', err
    top_pr = [a for a, b in topk(pagerank, seed)]

    # In[6]:
示例#3
0
            #For each node u, we add a node to k randomly chosen nodes
            weak_ties = random.choice(k)
            while weak_ties > 0:
                xt = random.randint(0, line - 1)
                yt = random.randint(0, line - 1)
                if xt * line + yt > n - 1:
                    continue
                if xt != i and yt != j and xt * line + yt not in graph[
                        i * line +
                        j] and random.random() <= (1 / (euclidean_distance(
                            (xt, yt), (i, j))**q)):
                    graph[i * line + j].add(xt * line + yt)
                    m -= 1
                    weak_ties -= 1
                    if m == 0:
                        return graph
    return graph


if __name__ == '__main__':
    EXECUTIONS = 3
    NODES = 7056
    # edges = random.randint(75000, 125000)
    edges = [75000, 100000, 125000]
    radius = 2
    weak_ties = [i * 5 for i in xrange(0, 3)]
    seed = 100
    for i in xrange(EXECUTIONS):
        g = GenWSGridGraph(NODES, edges[i], radius, weak_ties)
        print 'Edges %d\tAverage Clustering = %f' % (countEdges(g), ac(und(g)))
    return len(adopters)


# ## Set Parameters

# In[3]:

seed = 100

# ##Read the wiki-vote graph

# In[4]:

g = readGraph('wiki-Vote.txt')
print '# Wiki-Vote.txt'
print '# Edges = %d\tAverage Clustering = %f' % (countEdges(g) * 2, ac(und(g)))
fi(g)  # Fill incoming edges dictionary

sys.stdout.flush()

# ## Execute centrality measures

# In[8]:

print '# Page Rank execution...'
pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-3)
print '#', iterations, ' iterations. Error:', err
top_pr = [a for a, b in topk(pagerank, seed)]

# In[9]:

# ## Set Parameters

# In[3]:

seed = 100


# ##Read the wiki-vote graph

# In[4]:

g = readGraph('wiki-Vote.txt')
print '# Wiki-Vote.txt'
print '# Edges = %d\tAverage Clustering = %f'% (countEdges(g)*2, ac(und(g)))
fi(g) # Fill incoming edges dictionary

sys.stdout.flush()

# ## Execute centrality measures

# In[8]:

print '# Page Rank execution...'
pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-3)
print '#',iterations, ' iterations. Error:', err
top_pr = [a for a,b in topk(pagerank, seed)]


# In[9]: