class SimpleBackgroundExt(BackgroundIface): """ An extension class implementing XDS background subtraction. """ name = "glm" default = True @classmethod def phil(cls): from libtbx.phil import parse phil = parse( """ robust { tuning_constant = 1.345 .type = float .help = "The tuning constant for robust estimation" } model { algorithm = constant2d *constant3d loglinear2d loglinear3d .type = choice .help = "The background model to fit" } """ ) return phil def __init__(self, params, experiments): """ Initialise the algorithm. :param params: The input parameters :param experiments: The list of experiments """ from libtbx.phil import parse from dials.algorithms.background.glm import BackgroundAlgorithm # Create some default parameters if params is None: params = self.phil().fetch(parse("")).extract() else: params = params.integration.background.glm # Create the algorithm self._algorithm = BackgroundAlgorithm( experiments, tuning_constant=params.robust.tuning_constant, model=params.model.algorithm ) def compute_background(self, reflections, image_volume=None): """ Compute the background. :param reflections: The list of reflections """ return self._algorithm.compute_background(reflections, image_volume=image_volume)
def __init__(self, params, experiments): ''' Initialise the algorithm. :param params: The input parameters :param experiments: The list of experiments ''' from libtbx.phil import parse from dials.algorithms.background.glm import BackgroundAlgorithm # Create some default parameters if params is None: params = self.phil().fetch(parse('')).extract() else: params = params.integration.background.glm # Create the algorithm self._algorithm = BackgroundAlgorithm( experiments, tuning_constant=params.robust.tuning_constant, model=params.model.algorithm, min_pixels=params.min_pixels)
def __init__(self, params, experiments): """ Initialise the algorithm. :param params: The input parameters :param experiments: The list of experiments """ from libtbx.phil import parse from dials.algorithms.background.glm import BackgroundAlgorithm # Create some default parameters if params is None: params = self.phil().fetch(parse("")).extract() else: params = params.integration.background.glm # Create the algorithm self._algorithm = BackgroundAlgorithm( experiments, tuning_constant=params.robust.tuning_constant, model=params.model.algorithm )
class GLMBackgroundExt(object): ''' An extension class implementing a robust GLM background algorithm. ''' name = 'glm' default = True @classmethod def phil(cls): from libtbx.phil import parse phil = parse(''' robust { tuning_constant = 1.345 .type = float .help = "The tuning constant for robust estimation" } model { algorithm = constant2d *constant3d loglinear2d loglinear3d .type = choice .help = "The background model to fit" } min_pixels = 10 .type = int(value_min=1) .help = "The minimum number of pixels required" ''') return phil def __init__(self, params, experiments): ''' Initialise the algorithm. :param params: The input parameters :param experiments: The list of experiments ''' from libtbx.phil import parse from dials.algorithms.background.glm import BackgroundAlgorithm # Create some default parameters if params is None: params = self.phil().fetch(parse('')).extract() else: params = params.integration.background.glm # Create the algorithm self._algorithm = BackgroundAlgorithm( experiments, tuning_constant=params.robust.tuning_constant, model=params.model.algorithm, min_pixels=params.min_pixels) def compute_background(self, reflections, image_volume=None): ''' Compute the background. :param reflections: The list of reflections ''' return self._algorithm.compute_background(reflections, image_volume=image_volume)
class SimpleBackgroundExt(BackgroundIface): ''' An extension class implementing a robust GLM background algorithm. ''' name = 'glm' default=True @classmethod def phil(cls): from libtbx.phil import parse phil = parse(''' robust { tuning_constant = 1.345 .type = float .help = "The tuning constant for robust estimation" } model { algorithm = constant2d *constant3d loglinear2d loglinear3d .type = choice .help = "The background model to fit" } min_pixels = 10 .type = int(value_min=1) .help = "The minimum number of pixels required" ''') return phil def __init__(self, params, experiments): ''' Initialise the algorithm. :param params: The input parameters :param experiments: The list of experiments ''' from libtbx.phil import parse from dials.algorithms.background.glm import BackgroundAlgorithm # Create some default parameters if params is None: params = self.phil().fetch(parse('')).extract() else: params = params.integration.background.glm # Create the algorithm self._algorithm = BackgroundAlgorithm( experiments, tuning_constant=params.robust.tuning_constant, model=params.model.algorithm, min_pixels=params.min_pixels) def compute_background(self, reflections, image_volume=None): ''' Compute the background. :param reflections: The list of reflections ''' return self._algorithm.compute_background( reflections, image_volume=image_volume)