示例#1
0
    def __init__(
        self,
        experiment,
        mosaicity_parameterisation,
        fix_mosaic_spread=False,
        fix_wavelength_spread=False,
        fix_unit_cell=False,
        fix_orientation=False,
    ):
        """
        Initialise the model state

        """

        # Save the crystal model
        self.experiment = experiment
        self.crystal = experiment.crystal

        # The U and P parameterisation
        self.U_parameterisation = CrystalOrientationParameterisation(
            self.crystal)
        self.B_parameterisation = CrystalUnitCellParameterisation(self.crystal)

        # The M, L and W parameterisations
        self.M_parameterisation = mosaicity_parameterisation

        # Set the flags to fix parameters
        self._is_mosaic_spread_fixed = fix_mosaic_spread
        self._is_wavelength_spread_fixed = fix_wavelength_spread
        self._is_unit_cell_fixed = fix_unit_cell
        self._is_orientation_fixed = fix_orientation
示例#2
0
    def refine(self, do_print=False):
        crystal = self.crystal
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation,
            CrystalOrientationParameterisation,
        )

        self.cucp = CrystalUnitCellParameterisation(crystal)
        self.cop = CrystalOrientationParameterisation(crystal)

        self.zero()

        # 0-point and deltas
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        initial = crystal.get_unit_cell()
        self.cells = []
        self.best_score = 1e99
        initial_score = self.target(values)
        doohicky = simple_simplex(values, offset, self, 2000)
        best = doohicky.get_solution()
        if do_print:
            print("Initial cell:", initial)
            print("Final cell:  ", crystal.get_unit_cell())
            print("Score change", initial_score,
                  self.target(best, do_print=False))
        self.best = best
示例#3
0
    def create_models(self):
        # build models, with a larger crystal than default in order to get plenty of
        # reflections on the 'still' image
        overrides = """
    geometry.parameters.crystal.a.length.range=40 50;
    geometry.parameters.crystal.b.length.range=40 50;
    geometry.parameters.crystal.c.length.range=40 50;
    geometry.parameters.random_seed = 42"""

        master_phil = parse("""
        include scope dials.test.algorithms.refinement.geometry_phil
        """,
                            process_includes=True)

        models = Extract(master_phil, overrides)

        # keep track of the models
        self.detector = models.detector
        self.gonio = models.goniometer
        self.crystal = models.crystal
        self.beam = models.beam

        # Create a stills ExperimentList
        self.stills_experiments = ExperimentList()
        self.stills_experiments.append(
            Experiment(beam=self.beam,
                       detector=self.detector,
                       crystal=self.crystal,
                       imageset=None))

        # keep track of the parameterisation of the models
        self.det_param = DetectorParameterisationSinglePanel(self.detector)
        self.s0_param = BeamParameterisation(self.beam, self.gonio)
        self.xlo_param = CrystalOrientationParameterisation(self.crystal)
        self.xluc_param = CrystalUnitCellParameterisation(self.crystal)
示例#4
0
    def __init__(self, experiment, reflections, parameters):
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation, )
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalOrientationParameterisation, )

        # Store the input
        self.experiment = experiment
        self.reflections = reflections
        self.parameters = parameters

        # Get the crystal model and the parameterisation
        self.crystal = self.experiment.crystal
        self.cucp = CrystalUnitCellParameterisation(self.crystal)
        self.cop = CrystalOrientationParameterisation(self.crystal)

        # Get the current values and generate some offsets
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        # The optimization history
        self.history = []

        # Get the initial cell and initial score
        initial_cell = self.crystal.get_unit_cell()
        initial_orientation = self.crystal.get_U()
        initial_score = self.target(values)

        # Perform the optimization
        optimizer = simple_simplex(values, offset, self, 2000)
        result = optimizer.get_solution()

        # Print some information
        fmt = "(%.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f)"
        print("Initial cell:", initial_cell)
        print("Final cell:  ", self.crystal.get_unit_cell())
        print("Initial orientation: ", fmt % tuple(initial_orientation))
        print("Final orientation: ", fmt % tuple(self.crystal.get_U()))

        # Print RMSD
        Xobs, Yobs, _ = self.reflections["xyzobs.px.value"].parts()
        Xcal, Ycal, _ = self.reflections["xyzcal.px"].parts()
        rmsd_x = sqrt(flex.sum((Xcal - Xobs)**2) / len(Xcal))
        rmsd_y = sqrt(flex.sum((Ycal - Yobs)**2) / len(Ycal))
        print("RMSD X, Y (px): %f, %f" % (rmsd_x, rmsd_y))
示例#5
0
    def __init__(self, reflection_file, experiment_file):
        # make a pie

        data = pickle.load(open(reflection_file, "rb"))
        print("%d reflections" % data.size())

        self.data = data.select(data["intensity.sum.variance"] > 0)

        i = data["intensity.sum.value"]
        v = data["intensity.sum.variance"]
        s = flex.sqrt(v)
        self.i_s = i / s

        from dxtbx.model.experiment_list import ExperimentListFactory

        expt = ExperimentListFactory.from_json_file(experiment_file)
        crystal = expt.crystals()[0]
        self.s0 = matrix.col(expt.beams()[0].get_s0())

        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation,
            CrystalOrientationParameterisation,
        )

        self.crystal = crystal
        self.cucp = CrystalUnitCellParameterisation(crystal)
        self.cop = CrystalOrientationParameterisation(crystal)

        # 0-point and deltas
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        initial = crystal.get_unit_cell()
        initial_score = self.target(values)
        doohicky = simple_simplex(values, offset, self, 2000)
        best = doohicky.get_solution()
        print("Initial cell:", initial)
        print("Final cell:  ", crystal.get_unit_cell())
        print("Score change", initial_score, self.target(best, do_print=False))
        self.best = best
示例#6
0
    def __init__(
        self,
        experiment,
        mosaicity_parameterisation,
        wavelength_parameterisation=None,
        fix_mosaic_spread=False,
        fix_wavelength_spread=True,
        fix_unit_cell=False,
        fix_orientation=False,
    ):
        """
        Initialise the model state

        """

        # Save the crystal model
        self.experiment = experiment
        self.crystal = experiment.crystal

        # The U and P parameterisation
        self._U_parameterisation = CrystalOrientationParameterisation(
            self.crystal)
        self._B_parameterisation = CrystalUnitCellParameterisation(
            self.crystal)

        # The M and L parameterisations
        self._M_parameterisation = mosaicity_parameterisation
        self._L_parameterisation = wavelength_parameterisation

        # Set the flags to fix parameters
        self._is_mosaic_spread_fixed = fix_mosaic_spread
        self._is_wavelength_spread_fixed = fix_wavelength_spread
        self._is_unit_cell_fixed = fix_unit_cell
        self._is_orientation_fixed = fix_orientation

        # Check wavelength parameterisation
        if not self.is_wavelength_spread_fixed:
            assert self._L_parameterisation is not None
示例#7
0
def generate_data(experiments, reflections):

    from random import seed

    seed(0)

    index = randint(0, len(reflections))

    h = reflections[index]["miller_index"]

    s0 = matrix.col(experiments[0].beam.get_s0())

    U_param = CrystalOrientationParameterisation(experiments[0].crystal)
    B_param = CrystalUnitCellParameterisation(experiments[0].crystal)

    U = matrix.sqr(experiments[0].crystal.get_U())
    B = matrix.sqr(experiments[0].crystal.get_B())
    r = U * B * matrix.col(h)
    s2 = s0 + r
    mobs = (s2 + matrix.col((uniform(0, 1e-3), uniform(
        0, 1e-3), uniform(0, 1e-3)))).normalize() * s0.length()

    b1, b2, b3, b4, b5, b6 = (
        uniform(1e-3, 3e-3),
        uniform(0.0, 1e-3),
        uniform(1e-3, 3e-3),
        uniform(0.0, 1e-3),
        uniform(0.0, 1e-3),
        uniform(1e-3, 3e-3),
    )

    params = (b1, b2, b3, b4, b5, b6)

    S_param = SimpleMosaicityParameterisation(params)
    L_param = (uniform(1e-3, 2e-3), )
    W_param = (uniform(1e-3, 2e-3), uniform(0, 1e-3), uniform(1e-3, 2e-3))
    ctot = randint(100, 1000)

    T = matrix.sqr(
        (uniform(1e-3, 2e-3), 0, uniform(1e-6, 2e-6), uniform(1e-3, 2e-3)))
    Sobs = T * T.transpose()

    params = [S_param, U_param, B_param, L_param, W_param]

    return params, s0, h, ctot, mobs, Sobs
示例#8
0
def generate_data(experiments, reflections):

    from random import seed

    seed(0)

    index = randint(0, len(reflections))

    h = reflections[index]["miller_index"]

    s0 = matrix.col(experiments[0].beam.get_s0())

    U_param = CrystalOrientationParameterisation(experiments[0].crystal)
    B_param = CrystalUnitCellParameterisation(experiments[0].crystal)

    U = matrix.sqr(experiments[0].crystal.get_U())
    B = matrix.sqr(experiments[0].crystal.get_B())
    r = U * B * matrix.col(h)
    s2 = s0 + r
    mobs = (s2 + matrix.col((uniform(0, 1e-3), uniform(
        0, 1e-3), uniform(0, 1e-3)))).normalize() * s0.length()
    mobs = np.array([uniform(0, 1e-3), uniform(0, 1e-3)])
    sp = s2.normalize() * s0.length()

    b1, b2, b3, b4, b5, b6 = (
        uniform(1e-3, 3e-3),
        uniform(0.0, 1e-3),
        uniform(1e-3, 3e-3),
        uniform(0.0, 1e-3),
        uniform(0.0, 1e-3),
        uniform(1e-3, 3e-3),
    )

    S_param = (b1, b2, b3, b4, b5, b6)
    L_param = (uniform(1e-3, 2e-3), )
    ctot = randint(100, 1000)

    T = np.array((uniform(1e-3, 2e-3), 0, uniform(1e-6, 2e-6),
                  uniform(1e-3, 2e-3))).reshape(2, 2)
    Sobs = np.matmul(T, T.T)

    params = [S_param, U_param, B_param, L_param]

    return params, s0, sp, h, ctot, mobs, Sobs
示例#9
0
def test():
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get modules to build models and minimiser using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry
    import dials.test.algorithms.refinement.setup_minimiser as setup_minimiser

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff, )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    #############################
    # Setup experimental models #
    #############################

    override = """geometry.parameters
  {
    beam.wavelength.random=False
    beam.wavelength.value=1.0
    beam.direction.inclination.random=False
    crystal.a.length.random=False
    crystal.a.length.value=12.0
    crystal.a.direction.method=exactly
    crystal.a.direction.exactly.direction=1.0 0.002 -0.004
    crystal.b.length.random=False
    crystal.b.length.value=14.0
    crystal.b.direction.method=exactly
    crystal.b.direction.exactly.direction=-0.002 1.0 0.002
    crystal.c.length.random=False
    crystal.c.length.value=13.0
    crystal.c.direction.method=exactly
    crystal.c.direction.exactly.direction=0.002 -0.004 1.0
    detector.directions.method=exactly
    detector.directions.exactly.dir1=0.99 0.002 -0.004
    detector.directions.exactly.norm=0.002 -0.001 0.99
    detector.centre.method=exactly
    detector.centre.exactly.value=1.0 -0.5 199.0
  }"""

    master_phil = parse(
        """
  include scope dials.test.algorithms.refinement.geometry_phil
  include scope dials.test.algorithms.refinement.minimiser_phil
  """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil,
                                    local_overrides=override,
                                    verbose=False)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )

    # Build an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Create the PredictionParameterisation
    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [s0_param], [xlo_param],
                                                 [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 4 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 4.0, 4.0, 4.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 4 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 4.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=3 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [3.0, 3.0, 3.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # alpha and beta angles)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # The total number of observations should be 1128
    assert len(obs_refs) == 1128

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs,
                               experiments,
                               outlier_detector=None,
                               close_to_spindle_cutoff=0.1)

    ##############################
    # Set up the target function #
    ##############################

    # The current 'achieved' criterion compares RMSD against 1/3 the pixel size and
    # 1/3 the image width in radians. For the simulated data, these are just made up
    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None)

    ######################################
    # Set up the LSTBX refinement engine #
    ######################################

    overrides = """minimiser.parameters.engine=GaussNewton
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 1
    assert approx_equal(
        mytarget.rmsds(),
        (0.00508252354876, 0.00420954552156, 8.97303428289e-05))

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    ######################################################
    # Set up the LBFGS with curvatures refinement engine #
    ######################################################

    overrides = """minimiser.parameters.engine=LBFGScurvs
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 9
    assert approx_equal(mytarget.rmsds(),
                        (0.0558857700305, 0.0333446685335, 0.000347402754278))
示例#10
0
    Experiment(beam=mybeam,
               detector=mydetector,
               goniometer=mygonio,
               scan=myscan,
               crystal=crystal2,
               imageset=None))

assert len(experiments.detectors()) == 1

##########################################################
# Parameterise the models (only for perturbing geometry) #
##########################################################

det_param = DetectorParameterisationSinglePanel(mydetector)
s0_param = BeamParameterisation(mybeam, mygonio)
xl1o_param = CrystalOrientationParameterisation(crystal1)
xl1uc_param = CrystalUnitCellParameterisation(crystal1)
xl2o_param = CrystalOrientationParameterisation(crystal2)
xl2uc_param = CrystalUnitCellParameterisation(crystal2)

# Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
s0_param.set_fixed([True, False, True])

# Fix crystal parameters
#xluc_param.set_fixed([True, True, True, True, True, True])

########################################################################
# Link model parameterisations together into a parameterisation of the #
# prediction equation                                                  #
########################################################################
示例#11
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Import for surgery on reflection_tables
    from dials.array_family import flex

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Crystal parameterisations
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        StillsExperimentsPredictor,
    )
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    # build models, with a larger crystal than default in order to get enough
    # reflections on the 'still' image
    param = """
  geometry.parameters.crystal.a.length.range=40 50;
  geometry.parameters.crystal.b.length.range=40 50;
  geometry.parameters.crystal.c.length.range=40 50;
  geometry.parameters.random_seed = 42"""
    models = setup_geometry.Extract(master_phil,
                                    cmdline_args=args,
                                    local_overrides=param)

    crystal = models.crystal
    mydetector = models.detector
    mygonio = models.goniometer
    mybeam = models.beam

    # Build a mock scan for a 1.5 degree wedge. Only used for generating indices near
    # the Ewald sphere
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1),
        exposure_times=0.1,
        oscillation=(0, 1.5),
        epochs=list(range(1)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert approx_equal(im_width, 1.5 * pi / 180.0)

    # Build experiment lists
    stills_experiments = ExperimentList()
    stills_experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   crystal=crystal,
                   imageset=None))
    scans_experiments = ExperimentList()
    scans_experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            crystal=crystal,
            goniometer=mygonio,
            scan=myscan,
            imageset=None,
        ))

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    ################################
    # Apply known parameter shifts #
    ################################

    # rotate crystal (=5 mrad each rotation)
    xlo_p_vals = []
    p_vals = xlo_param.get_param_vals()
    xlo_p_vals.append(p_vals)
    new_p_vals = [a + b for a, b in zip(p_vals, [5.0, 5.0, 5.0])]
    xlo_param.set_param_vals(new_p_vals)

    # change unit cell (=1.0 Angstrom length upsets, 0.5 degree of
    # gamma angle)
    xluc_p_vals = []
    p_vals = xluc_param.get_param_vals()
    xluc_p_vals.append(p_vals)
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [1.0, 1.0, -1.0, 0.0, 0.0, 0.5])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    # keep track of the target crystal model to compare with refined
    from copy import deepcopy

    target_crystal = deepcopy(crystal)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere for crystal
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Build a ray predictor and predict rays close to the Ewald sphere by using
    # the narrow rotation scan
    ref_predictor = ScansRayPredictor(scans_experiments, sweep_range)
    obs_refs = ref_predictor(indices, experiment_id=0)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Add in flags and ID columns by copying into standard reflection table
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Re-predict using the stills reflection predictor
    stills_ref_predictor = StillsExperimentsPredictor(stills_experiments)
    obs_refs_stills = stills_ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs_stills["xyzobs.mm.value"] = obs_refs_stills["xyzcal.mm"]

    ###############################
    # Undo known parameter shifts #
    ###############################

    xlo_param.set_param_vals(xlo_p_vals[0])
    xluc_param.set_param_vals(xluc_p_vals[0])

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope

    params = phil_scope.fetch(source=parse("")).extract()

    # Change this to get a plot
    do_plot = False
    if do_plot:
        params.refinement.refinery.journal.track_parameter_correlation = True

    from dials.algorithms.refinement.refiner import RefinerFactory

    # decrease bin_size_fraction to terminate on RMSD convergence
    params.refinement.target.bin_size_fraction = 0.01
    params.refinement.parameterisation.beam.fix = "all"
    params.refinement.parameterisation.detector.fix = "all"
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs_stills, stills_experiments)

    # run refinement
    history = refiner.run()

    # regression tests
    assert len(history["rmsd"]) == 9

    refined_crystal = refiner.get_experiments()[0].crystal
    uc1 = refined_crystal.get_unit_cell()
    uc2 = target_crystal.get_unit_cell()
    assert uc1.is_similar_to(uc2)

    if do_plot:
        plt = refiner.parameter_correlation_plot(
            len(history["parameter_correlation"]) - 1)
        plt.show()
示例#12
0
class ModelState(object):
    """
    A class to keep track of the model state

    """
    def __init__(
        self,
        experiment,
        mosaicity_parameterisation,
        fix_mosaic_spread=False,
        fix_wavelength_spread=False,
        fix_unit_cell=False,
        fix_orientation=False,
    ):
        """
        Initialise the model state

        """

        # Save the crystal model
        self.experiment = experiment
        self.crystal = experiment.crystal

        # The U and P parameterisation
        self.U_parameterisation = CrystalOrientationParameterisation(
            self.crystal)
        self.B_parameterisation = CrystalUnitCellParameterisation(self.crystal)

        # The M, L and W parameterisations
        self.M_parameterisation = mosaicity_parameterisation

        # Set the flags to fix parameters
        self._is_mosaic_spread_fixed = fix_mosaic_spread
        self._is_wavelength_spread_fixed = fix_wavelength_spread
        self._is_unit_cell_fixed = fix_unit_cell
        self._is_orientation_fixed = fix_orientation

    def is_orientation_fixed(self):
        """
        Return whether the orientation is fixed

        """
        return self._is_orientation_fixed

    def is_unit_cell_fixed(self):
        """
        Return whether the unit cell is fixed

        """
        return self._is_unit_cell_fixed

    def is_mosaic_spread_fixed(self):
        """
        Return whether the mosaic spread is fixed

        """
        return self._is_mosaic_spread_fixed

    def is_mosaic_spread_angular(self):
        """
        Return whether the mosaic spread is angular

        """
        return self.M_parameterisation.is_angular()

    def is_wavelength_spread_fixed(self):
        """
        Return whether the wavelength spread is fixed

        """
        return self._is_wavelength_spread_fixed

    def get_unit_cell(self):
        """
        Get the crystal unit cell

        """
        return self.crystal.get_unit_cell()

    def get_U(self):
        """
        Get the crystal U matrix

        """
        return matrix.sqr(self.crystal.get_U())

    def get_B(self):
        """
        Get the crystal B matrix

        """
        return matrix.sqr(self.crystal.get_B())

    def get_A(self):
        """
        Get the crystal A matrix

        """
        return matrix.sqr(self.crystal.get_A())

    def get_M(self):
        """
        Get the Sigma M matrix

        """
        return self.M_parameterisation.sigma()

    def get_U_params(self):
        """
        Get the U parameters

        """
        return flex.double(self.U_parameterisation.get_param_vals())

    def get_B_params(self):
        """
        Get the B parameters

        """
        return flex.double(self.B_parameterisation.get_param_vals())

    def get_M_params(self):
        """
        Get the M parameters

        """
        return self.M_parameterisation.parameters()

    def set_U_params(self, params):
        """
        Set the U parameters

        """
        return self.U_parameterisation.set_param_vals(params)

    def set_B_params(self, params):
        """
        Set the B parameters

        """
        return self.B_parameterisation.set_param_vals(params)

    def set_M_params(self, params):
        """
        Set the M parameters

        """
        return self.M_parameterisation.set_parameters(params)

    def num_U_params(self):
        """
        Get the number of U parameters

        """
        return len(self.get_U_params())

    def num_B_params(self):
        """
        Get the number of B parameters

        """
        return len(self.get_B_params())

    def num_M_params(self):
        """
        Get the number of M parameters

        """
        return len(self.get_M_params())

    def get_dU_dp(self):
        """
        Get the first derivatives of U w.r.t its parameters

        """
        return flex.mat3_double(self.U_parameterisation.get_ds_dp())

    def get_dB_dp(self):
        """
        Get the first derivatives of B w.r.t its parameters

        """
        return flex.mat3_double(self.B_parameterisation.get_ds_dp())

    def get_dM_dp(self):
        """
        Get the first derivatives of M w.r.t its parameters

        """
        return self.M_parameterisation.first_derivatives()

    def get_active_parameters(self):
        """
        Get the active parameters in order: U, B, M, L, W

        """
        active_params = flex.double()
        if not self._is_orientation_fixed:
            active_params.extend(self.get_U_params())
        if not self._is_unit_cell_fixed:
            active_params.extend(self.get_B_params())
        if not self._is_mosaic_spread_fixed:
            active_params.extend(self.get_M_params())
        if not self._is_wavelength_spread_fixed:
            active_params.extend(self.get_L_params())
        assert len(active_params) > 0
        return active_params

    def set_active_parameters(self, params):
        """
        Set the active parameters in order: U, B, M, L, W

        """
        if not self._is_orientation_fixed:
            temp = params[:self.num_U_params()]
            params = params[self.num_U_params():]
            self.set_U_params(temp)
        if not self._is_unit_cell_fixed:
            temp = params[:self.num_B_params()]
            params = params[self.num_B_params():]
            self.set_B_params(temp)
        if not self._is_mosaic_spread_fixed:
            temp = params[:self.num_M_params()]
            params = params[self.num_M_params():]
            self.set_M_params(temp)
        if not self._is_wavelength_spread_fixed:
            temp = params[:self.num_L_params()]
            params = params[self.num_L_params():]
            self.set_L_params(temp)

    def get_labels(self):
        """
        Get the parameter labels

        """
        labels = []
        if not self._is_orientation_fixed:
            for i in range(len(self.get_U_params())):
                labels.append("Crystal_U_%d" % i)
        if not self._is_unit_cell_fixed:
            for i in range(len(self.get_B_params())):
                labels.append("Crystal_B_%d" % i)
        if not self._is_mosaic_spread_fixed:
            for i in range(len(self.get_M_params())):
                labels.append("Mosaicity_%d" % i)
        if not self._is_wavelength_spread_fixed:
            labels.append("Wavelength_Spread")
        assert len(labels) > 0
        return labels
models = setup_geometry.Extract(master_phil,
                                local_overrides=override,
                                verbose=False)

mydetector = models.detector
mygonio = models.goniometer
mycrystal = models.crystal
mybeam = models.beam

###########################
# Parameterise the models #
###########################

det_param = DetectorParameterisationSinglePanel(mydetector)
s0_param = BeamParameterisation(mybeam, mygonio)
xlo_param = CrystalOrientationParameterisation(mycrystal)
xluc_param = CrystalUnitCellParameterisation(mycrystal)

# Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
s0_param.set_fixed([True, False, True])

########################################################################
# Link model parameterisations together into a parameterisation of the #
# prediction equation                                                  #
########################################################################

# Build a mock scan for a 180 degree sweep
sf = scan_factory()
myscan = sf.make_scan(image_range=(1, 1800),
                      exposure_times=0.1,
                      oscillation=(0, 0.1),
assert sweep_range == (0., pi)
assert approx_equal(im_width, 0.1 * pi / 180.)

# Build an experiment list
experiments = ExperimentList()
experiments.append(Experiment(
      beam=mybeam, detector=mydetector, goniometer=mygonio,
      scan=myscan, crystal=mycrystal, imageset=None))

###########################
# Parameterise the models #
###########################

det_param = DetectorParameterisationSinglePanel(mydetector)
s0_param = BeamParameterisation(mybeam, mygonio)
xlo_param = CrystalOrientationParameterisation(mycrystal)
xluc_param = CrystalUnitCellParameterisation(mycrystal)

# TEMPORARY TESTING HERE
from dials.algorithms.refinement.restraints.restraints import SingleUnitCellTie
uct = SingleUnitCellTie(xluc_param, [None]*6, [None]*6)

# Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
s0_param.set_fixed([True, False, True])

# Fix crystal parameters
#xluc_param.set_fixed([True, True, True, True, True, True])

########################################################################
# Link model parameterisations together into a parameterisation of the #
# prediction equation                                                  #
示例#15
0
               crystal=crystal,
               imageset=None))
scans_experiments = ExperimentList()
scans_experiments.append(
    Experiment(beam=mybeam,
               detector=mydetector,
               crystal=crystal,
               goniometer=mygonio,
               scan=myscan,
               imageset=None))

##########################################################
# Parameterise the models (only for perturbing geometry) #
##########################################################

xlo_param = CrystalOrientationParameterisation(crystal)
xluc_param = CrystalUnitCellParameterisation(crystal)

################################
# Apply known parameter shifts #
################################

# rotate crystal (=5 mrad each rotation)
xlo_p_vals = []
p_vals = xlo_param.get_param_vals()
xlo_p_vals.append(p_vals)
new_p_vals = [a + b for a, b in zip(p_vals, [5., 5., 5.])]
xlo_param.set_param_vals(new_p_vals)

# change unit cell (=1.0 Angstrom length upsets, 0.5 degree of
# gamma angle)
示例#16
0
def test(dials_regression):
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal
    from scitbx import matrix

    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Get modules to build models and minimiser using PHIL
    from dials.tests.algorithms.refinement import setup_geometry

    # Symmetry constrained parameterisation for the unit cell
    DEG2RAD = math.pi / 180.0
    RAD2DEG = 180.0 / math.pi

    master_phil = parse(
        """
      include scope dials.tests.algorithms.refinement.geometry_phil
      include scope dials.tests.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    # make cell more oblique
    args = [
        "a.direction.close_to.sd=5",
        "b.direction.close_to.sd=5",
        "c.direction.close_to.sd=5",
    ]
    models = setup_geometry.Extract(master_phil, cmdline_args=args)
    crystal = models.crystal

    # a hexagonal crystal is a good test case for behaviour of oblique cells
    do_hexagonal = True
    if do_hexagonal:
        from dxtbx.model.experiment_list import ExperimentListFactory

        experiments = ExperimentListFactory.from_json_file(
            os.path.join(
                dials_regression,
                "refinement_test_data",
                "multi_stills",
                "combined_experiments.json",
            ),
            check_format=False,
        )
        crystal = experiments[0].crystal

    # derive finite difference gradients of various quantities wrt each param
    def check_fd_gradients(parameterisation):
        mp = parameterisation
        p_vals = mp.get_param_vals()
        deltas = [1.0e-7 for p in p_vals]
        assert len(deltas) == len(p_vals)
        fd_grad = []

        # get matrix to unset rotations of unit cell vectors
        Ut = matrix.sqr(mp.get_model().get_U()).transpose()

        for i, delta in enumerate(deltas):
            val = p_vals[i]

            p_vals[i] -= delta / 2.0
            mp.set_param_vals(p_vals)
            rev_uc = mp.get_model().get_unit_cell().parameters()
            rev_vec = mp.get_model().get_real_space_vectors()
            rev_vec = [Ut * vec for vec in rev_vec]
            rev_B = matrix.sqr(mp.get_model().get_B())
            rev_O = rev_B.transpose().inverse()

            p_vals[i] += delta
            mp.set_param_vals(p_vals)
            fwd_uc = mp.get_model().get_unit_cell().parameters()
            fwd_vec = mp.get_model().get_real_space_vectors()
            fwd_vec = [Ut * vec for vec in fwd_vec]
            fwd_B = matrix.sqr(mp.get_model().get_B())
            fwd_O = fwd_B.transpose().inverse()

            fd_uc = [(f - r) / delta for f, r in zip(fwd_uc, rev_uc)]
            fd_vec = [(f - r) / delta for f, r in zip(fwd_vec, rev_vec)]
            fd_B = (fwd_B - rev_B) / delta
            fd_O = (fwd_O - rev_O) / delta

            fd_grad.append(
                {
                    "da_dp": fd_uc[0],
                    "db_dp": fd_uc[1],
                    "dc_dp": fd_uc[2],
                    "daa_dp": fd_uc[3],
                    "dbb_dp": fd_uc[4],
                    "dcc_dp": fd_uc[5],
                    "davec_dp": fd_vec[0],
                    "dbvec_dp": fd_vec[1],
                    "dcvec_dp": fd_vec[2],
                    "dB_dp": fd_B,
                    "dO_dp": fd_O,
                }
            )

            p_vals[i] = val

        # return to the initial state
        mp.set_param_vals(p_vals)

        return fd_grad

    assert CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    from dials.algorithms.refinement.restraints.restraints import SingleUnitCellTie

    assert SingleUnitCellTie(xluc_param, [0] * 6, [0] * 6)

    from scitbx.math import angle_derivative_wrt_vectors

    B = matrix.sqr(crystal.get_B())
    O = (B.transpose()).inverse()
    a, b, c, aa, bb, cc = crystal.get_unit_cell().parameters()
    aa *= DEG2RAD
    bb *= DEG2RAD
    cc *= DEG2RAD
    Ut = matrix.sqr(crystal.get_U()).transpose()
    avec, bvec, cvec = [Ut * vec for vec in crystal.get_real_space_vectors()]

    # calculate d[B^T]/dp
    dB_dp = xluc_param.get_ds_dp()
    dBT_dp = [dB.transpose() for dB in dB_dp]

    # calculate d[O]/dp
    dO_dp = [-O * dBT * O for dBT in dBT_dp]

    # function to get analytical derivative of angles wrt vectors
    def dangle(u, v):
        return [matrix.col(e) for e in angle_derivative_wrt_vectors(u, v)]

    dalpha_db, dalpha_dc = dangle(bvec, cvec)
    dbeta_da, dbeta_dc = dangle(avec, cvec)
    dgamma_da, dgamma_db = dangle(avec, bvec)

    # get all FD derivatives
    fd_grad = check_fd_gradients(xluc_param)

    # look at each parameter
    for i, dO in enumerate(dO_dp):

        # print
        # print "***** PARAMETER {0} *****".format(i)

        # print "dB_dp analytical"
        # print dB_dp[i]
        # print "dB_dp FD"
        # print fd_grad[i]['dB_dp']
        # print

        # dB_dp is good. What about dO_dp?

        # print "O MATRIX"
        # print "dO_dp analytical"
        # print dO.round(6)
        # print "dO_dp FD"
        # print fd_grad[i]['dO_dp'].round(6)
        # print
        assert approx_equal(dO, fd_grad[i]["dO_dp"])

        # extract derivatives of each unit cell vector wrt p
        dav_dp, dbv_dp, dcv_dp = dO.transpose().as_list_of_lists()
        dav_dp = matrix.col(dav_dp)
        dbv_dp = matrix.col(dbv_dp)
        dcv_dp = matrix.col(dcv_dp)

        # check these are correct vs FD
        # print "CELL VECTORS"
        # diff = dav_dp - fd_grad[i]['davec_dp']
        # print 2 * diff.length() / (dav_dp.length() + fd_grad[i]['davec_dp'].length()) * 100
        # print 'davec_dp analytical: {0:.5f} {1:.5f} {2:.5f}'.format(*dav_dp.elems)
        # print 'davec_dp finite diff: {0:.5f} {1:.5f} {2:.5f}'.format(*fd_grad[i]['davec_dp'].elems)
        assert approx_equal(dav_dp, fd_grad[i]["davec_dp"])

        # diff = dbv_dp - fd_grad[i]['dbvec_dp']
        # print 2 * diff.length() / (dbv_dp.length() + fd_grad[i]['dbvec_dp'].length()) * 100
        # print 'dbvec_dp analytical: {0:.5f} {1:.5f} {2:.5f}'.format(*dbv_dp.elems)
        # print 'dbvec_dp finite diff: {0:.5f} {1:.5f} {2:.5f}'.format(*fd_grad[i]['dbvec_dp'].elems)
        assert approx_equal(dbv_dp, fd_grad[i]["dbvec_dp"])

        # diff = dcv_dp - fd_grad[i]['dcvec_dp']
        # print 2 * diff.length() / (dcv_dp.length() + fd_grad[i]['dcvec_dp'].length()) * 100
        # print 'dcvec_dp analytical: {0:.5f} {1:.5f} {2:.5f}'.format(*dcv_dp.elems)
        # print 'dcvec_dp finite diff: {0:.5f} {1:.5f} {2:.5f}'.format(*fd_grad[i]['dcvec_dp'].elems)
        # print
        assert approx_equal(dcv_dp, fd_grad[i]["dcvec_dp"])

        # print "CELL LENGTHS"
        da_dp = 1.0 / a * avec.dot(dav_dp)
        # print "d[a]/dp{2} analytical: {0:.5f} FD: {1:.5f}".format(da_dp, fd_grad[i]['da_dp'], i)
        assert approx_equal(da_dp, fd_grad[i]["da_dp"])

        db_dp = 1.0 / b * bvec.dot(dbv_dp)
        # print "d[b]/dp{2} analytical: {0:.5f} FD: {1:.5f}".format(db_dp, fd_grad[i]['db_dp'], i)
        assert approx_equal(db_dp, fd_grad[i]["db_dp"])

        dc_dp = 1.0 / c * cvec.dot(dcv_dp)
        # print "d[c]/dp{2} analytical: {0:.5f} FD: {1:.5f}".format(dc_dp, fd_grad[i]['dc_dp'], i)
        assert approx_equal(dc_dp, fd_grad[i]["dc_dp"])

        # print
        # print "CELL ANGLES"

        daa_dp = RAD2DEG * (dbv_dp.dot(dalpha_db) + dcv_dp.dot(dalpha_dc))
        dbb_dp = RAD2DEG * (dav_dp.dot(dbeta_da) + dcv_dp.dot(dbeta_dc))
        dcc_dp = RAD2DEG * (dav_dp.dot(dgamma_da) + dbv_dp.dot(dgamma_db))

        # print "d[alpha]/dp{2} analytical: {0:.5f} FD: {1:.5f}".format(daa_dp, fd_grad[i]['daa_dp'], i)
        # print "d[beta]/dp{2} analytical: {0:.5f} FD: {1:.5f}".format(dbb_dp, fd_grad[i]['dbb_dp'], i)
        # print "d[gamma]/dp{2} analytical: {0:.5f} FD: {1:.5f}".format(dcc_dp, fd_grad[i]['dcc_dp'], i)
        assert approx_equal(daa_dp, fd_grad[i]["daa_dp"])
        assert approx_equal(dbb_dp, fd_grad[i]["dbb_dp"])
        assert approx_equal(dcc_dp, fd_grad[i]["dcc_dp"])
def test1():

    dials_regression = libtbx.env.find_in_repositories(
        relative_path="dials_regression", test=os.path.isdir)

    # use a datablock that contains a CS-PAD detector description
    data_dir = os.path.join(dials_regression, "refinement_test_data",
                            "hierarchy_test")
    datablock_path = os.path.join(data_dir, "datablock.json")
    assert os.path.exists(datablock_path)

    # load models
    from dxtbx.datablock import DataBlockFactory
    datablock = DataBlockFactory.from_serialized_format(datablock_path,
                                                        check_format=False)
    im_set = datablock[0].extract_imagesets()[0]
    from copy import deepcopy
    detector = deepcopy(im_set.get_detector())
    beam = im_set.get_beam()

    # we'll invent a crystal, goniometer and scan for this test
    from dxtbx.model import Crystal
    crystal = Crystal((40., 0., 0.), (0., 40., 0.), (0., 0., 40.),
                      space_group_symbol="P1")

    from dxtbx.model import GoniometerFactory
    goniometer = GoniometerFactory.known_axis((1., 0., 0.))

    # Build a mock scan for a 180 degree sweep
    from dxtbx.model import ScanFactory
    sf = ScanFactory()
    scan = sf.make_scan(image_range=(1, 1800),
                        exposure_times=0.1,
                        oscillation=(0, 0.1),
                        epochs=range(1800),
                        deg=True)
    sweep_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sweep_range == (0., pi)
    assert approx_equal(im_width, 0.1 * pi / 180.)

    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(beam=beam,
                   detector=detector,
                   goniometer=goniometer,
                   scan=scan,
                   crystal=crystal,
                   imageset=None))

    # simulate some reflections
    refs, ref_predictor = generate_reflections(experiments)

    # move the detector quadrants apart by 2mm both horizontally and vertically
    from dials.algorithms.refinement.parameterisation \
      import DetectorParameterisationHierarchical
    det_param = DetectorParameterisationHierarchical(detector, level=1)
    det_p_vals = det_param.get_param_vals()
    p_vals = list(det_p_vals)
    p_vals[1] += 2
    p_vals[2] -= 2
    p_vals[7] += 2
    p_vals[8] += 2
    p_vals[13] -= 2
    p_vals[14] += 2
    p_vals[19] -= 2
    p_vals[20] -= 2
    det_param.set_param_vals(p_vals)

    # reparameterise the detector at the new perturbed geometry
    det_param = DetectorParameterisationHierarchical(detector, level=1)

    # parameterise other models
    from dials.algorithms.refinement.parameterisation.beam_parameters import \
        BeamParameterisation
    from dials.algorithms.refinement.parameterisation.crystal_parameters import \
        CrystalOrientationParameterisation, CrystalUnitCellParameterisation
    beam_param = BeamParameterisation(beam, goniometer)
    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    # fix beam
    beam_param.set_fixed([True] * 3)

    # fix crystal
    xluc_param.set_fixed([True] * 6)
    xlo_param.set_fixed([True] * 3)

    # parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import \
        XYPhiPredictionParameterisation
    from dials.algorithms.refinement.parameterisation.parameter_report import \
        ParameterReporter
    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [beam_param], [xlo_param],
                                                 [xluc_param])
    param_reporter = ParameterReporter([det_param], [beam_param], [xlo_param],
                                       [xluc_param])

    # reflection manager and target function
    from dials.algorithms.refinement.target import \
      LeastSquaresPositionalResidualWithRmsdCutoff
    from dials.algorithms.refinement.reflection_manager import ReflectionManager
    refman = ReflectionManager(refs, experiments, nref_per_degree=20)

    # set a very tight rmsd target of 1/10000 of a pixel
    target = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None,
        frac_binsize_cutoff=0.0001)

    # minimisation engine
    from dials.algorithms.refinement.engine \
      import LevenbergMarquardtIterations as Refinery
    refinery = Refinery(target=target,
                        prediction_parameterisation=pred_param,
                        log=None,
                        verbosity=0,
                        max_iterations=20)

    # Refiner
    from dials.algorithms.refinement.refiner import Refiner
    refiner = Refiner(reflections=refs,
                      experiments=experiments,
                      pred_param=pred_param,
                      param_reporter=param_reporter,
                      refman=refman,
                      target=target,
                      refinery=refinery,
                      verbosity=0)

    history = refiner.run()
    assert history.reason_for_termination == "RMSD target achieved"

    #compare detector with original detector
    orig_det = im_set.get_detector()
    refined_det = refiner.get_experiments()[0].detector

    from scitbx import matrix
    import math
    for op, rp in zip(orig_det, refined_det):
        # compare the origin vectors by...
        o1 = matrix.col(op.get_origin())
        o2 = matrix.col(rp.get_origin())
        # ...their relative lengths
        assert approx_equal(math.fabs(o1.length() - o2.length()) / o1.length(),
                            0,
                            eps=1e-5)
        # ...the angle between them
        assert approx_equal(o1.accute_angle(o2), 0, eps=1e-5)

    print "OK"
    return
示例#18
0
def test(args=[]):
    #############################
    # Setup experimental models #
    #############################
    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil, cmdline_args=args)

    single_panel_detector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Make a 3x3 multi panel detector filling the same space as the existing
    # single panel detector. Each panel of the multi-panel detector has pixels with
    # 1/3 the length dimensions of the single panel.

    multi_panel_detector = Detector()
    for x in range(3):
        for y in range(3):
            new_panel = make_panel_in_array((x, y), single_panel_detector[0])
            multi_panel_detector.add_panel(new_panel)

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build ExperimentLists
    experiments_single_panel = ExperimentList()
    experiments_multi_panel = ExperimentList()
    experiments_single_panel.append(
        Experiment(
            beam=mybeam,
            detector=single_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))
    experiments_multi_panel.append(
        Experiment(
            beam=mybeam,
            detector=multi_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(single_panel_detector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    multi_det_param = DetectorParameterisationMultiPanel(
        multi_panel_detector, mybeam)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    # xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(experiments_single_panel,
                                                 [det_param], [s0_param],
                                                 [xlo_param], [xluc_param])

    pred_param2 = XYPhiPredictionParameterisation(
        experiments_multi_panel,
        [multi_det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detectors by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    multi_det_p_vals = multi_det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(multi_det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    multi_det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # for the reflection predictor, it doesn't matter which experiment list is
    # passed, as the detector is not used
    ref_predictor = ScansRayPredictor(experiments_single_panel, sweep_range)

    # get two sets of identical reflections
    obs_refs = ref_predictor(indices)
    obs_refs2 = ref_predictor(indices)
    for r1, r2 in zip(obs_refs, obs_refs2):
        assert r1["s1"] == r2["s1"]

    # get the panel intersections
    sel = ray_intersection(single_panel_detector, obs_refs)
    obs_refs = obs_refs.select(sel)
    sel = ray_intersection(multi_panel_detector, obs_refs2)
    obs_refs2 = obs_refs2.select(sel)
    assert len(obs_refs) == len(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = single_panel_detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)

    # set the variances and frame numbers
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Add in flags and ID columns by copying into standard reflection tables
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp
    tmp = flex.reflection_table.empty_standard(len(obs_refs2))
    tmp.update(obs_refs2)
    obs_refs2 = tmp

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments_single_panel)
    refman2 = ReflectionManager(obs_refs, experiments_multi_panel)

    ###############################
    # Set up the target functions #
    ###############################

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_single_panel,
        ScansExperimentsPredictor(experiments_single_panel),
        refman,
        pred_param,
        restraints_parameterisation=None,
    )
    mytarget2 = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_multi_panel,
        ScansExperimentsPredictor(experiments_multi_panel),
        refman2,
        pred_param2,
        restraints_parameterisation=None,
    )

    #################################
    # Set up the refinement engines #
    #################################

    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      cmdline_args=args).refiner
    refiner2 = setup_minimiser.Extract(master_phil,
                                       mytarget2,
                                       pred_param2,
                                       cmdline_args=args).refiner

    refiner.run()

    # reset parameters and run refinement with the multi panel detector
    s0_param.set_param_vals(s0_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    refiner2.run()

    # same number of steps
    assert refiner.get_num_steps() == refiner2.get_num_steps()

    # same rmsds
    for rmsd, rmsd2 in zip(refiner.history["rmsd"], refiner2.history["rmsd"]):
        assert approx_equal(rmsd, rmsd2)

    # same parameter values each step
    for params, params2 in zip(refiner.history["parameter_vector"],
                               refiner.history["parameter_vector"]):
        assert approx_equal(params, params2)
示例#19
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    import random
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Experimental model builder
    from dials.test.algorithms.refinement.setup_geometry import Extract

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff, )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    # Local functions
    def random_direction_close_to(vector, sd=0.5):
        return vector.rotate_around_origin(
            matrix.col((random.random(), random.random(),
                        random.random())).normalize(),
            random.gauss(0, sd),
            deg=True,
        )

    #############################
    # Setup experimental models #
    #############################

    # make a small cell to speed up calculations
    overrides = """geometry.parameters.crystal.a.length.range = 10 15
  geometry.parameters.crystal.b.length.range = 10 15
  geometry.parameters.crystal.c.length.range = 10 15"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides, cmdline_args=args)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sweep of 0.1 degree images
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [s0_param], [xlo_param],
                                                 [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 0.2 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in one axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)
    p_vals[1] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments)

    ##############################
    # Set up the target function #
    ##############################

    # Redefine the reflection predictor to use the type expected by the Target class
    ref_predictor = ScansExperimentsPredictor(experiments)

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None)

    # get the functional and gradients
    mytarget.predict()
    L, dL_dp, curvs = mytarget.compute_functional_gradients_and_curvatures()

    ####################################
    # Do FD calculation for comparison #
    ####################################

    # function for calculating finite difference gradients of the target function
    def get_fd_gradients(target, pred_param, deltas):
        """Calculate centered finite difference gradients for each of the
        parameters of the target function.

        "deltas" must be a sequence of the same length as the parameter list, and
        contains the step size for the difference calculations for each parameter.
        """

        p_vals = pred_param.get_param_vals()
        assert len(deltas) == len(p_vals)
        fd_grad = []
        fd_curvs = []

        for i in range(len(deltas)):
            val = p_vals[i]

            p_vals[i] -= deltas[i] / 2.0
            pred_param.set_param_vals(p_vals)
            target.predict()

            rev_state = target.compute_functional_gradients_and_curvatures()

            p_vals[i] += deltas[i]
            pred_param.set_param_vals(p_vals)

            target.predict()

            fwd_state = target.compute_functional_gradients_and_curvatures()

            # finite difference estimation of first derivatives
            fd_grad.append((fwd_state[0] - rev_state[0]) / deltas[i])

            # finite difference estimation of curvatures, using the analytical
            # first derivatives
            fd_curvs.append((fwd_state[1][i] - rev_state[1][i]) / deltas[i])

            # set parameter back to centred value
            p_vals[i] = val

        # return to the initial state
        pred_param.set_param_vals(p_vals)

        return fd_grad, fd_curvs

    # test normalised differences between FD and analytical calculations
    fdgrads = get_fd_gradients(mytarget, pred_param,
                               [1.0e-7] * len(pred_param))
    diffs = [a - b for a, b in zip(dL_dp, fdgrads[0])]
    norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[0])])
    for e in norm_diffs:
        assert abs(e) < 0.001  # check differences less than 0.1%

    # test normalised differences between FD curvatures and analytical least
    # squares approximation. We don't expect this to be especially close
    if curvs:
        diffs = [a - b for a, b in zip(curvs, fdgrads[1])]
        norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[1])])
        for e in norm_diffs:
            assert abs(e) < 0.1  # check differences less than 10%
示例#20
0
class CrystalRefiner(object):
    def __init__(self, experiment, reflections, parameters):
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation, )
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalOrientationParameterisation, )

        # Store the input
        self.experiment = experiment
        self.reflections = reflections
        self.parameters = parameters

        # Get the crystal model and the parameterisation
        self.crystal = self.experiment.crystal
        self.cucp = CrystalUnitCellParameterisation(self.crystal)
        self.cop = CrystalOrientationParameterisation(self.crystal)

        # Get the current values and generate some offsets
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        # The optimization history
        self.history = []

        # Get the initial cell and initial score
        initial_cell = self.crystal.get_unit_cell()
        initial_orientation = self.crystal.get_U()
        initial_score = self.target(values)

        # Perform the optimization
        optimizer = simple_simplex(values, offset, self, 2000)
        result = optimizer.get_solution()

        # Print some information
        fmt = "(%.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f)"
        print("Initial cell:", initial_cell)
        print("Final cell:  ", self.crystal.get_unit_cell())
        print("Initial orientation: ", fmt % tuple(initial_orientation))
        print("Final orientation: ", fmt % tuple(self.crystal.get_U()))

        # Print RMSD
        Xobs, Yobs, _ = self.reflections["xyzobs.px.value"].parts()
        Xcal, Ycal, _ = self.reflections["xyzcal.px"].parts()
        rmsd_x = sqrt(flex.sum((Xcal - Xobs)**2) / len(Xcal))
        rmsd_y = sqrt(flex.sum((Ycal - Yobs)**2) / len(Ycal))
        print("RMSD X, Y (px): %f, %f" % (rmsd_x, rmsd_y))

    def target(self, vector):
        """
        The target function

        """
        from dials.array_family import flex
        from math import sqrt

        # Get the cell and orientation parameters
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)

        # Update the cell and orientation parameters
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]
        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        # Generate predicted positions
        s1_cal, s2_cal = self.generate_predictions(self.experiment,
                                                   self.reflections,
                                                   self.parameters)

        # Do the ray intersection
        self.reflections["s1"] = s1_cal
        self.reflections["s2"] = s2_cal
        self.reflections["xyzcal.px"] = flex.vec3_double([
            self.experiment.detector[0].get_ray_intersection_px(s1) + (0, )
            for s1 in s1_cal
        ])

        # Get predictions and observations
        Xobs, Yobs, _ = self.reflections["xyzobs.px.value"].parts()
        Xcal, Ycal, _ = self.reflections["xyzcal.px"].parts()

        # Compute the rmsd between observed and calculated
        score = flex.sum((Xobs - Xcal)**2 + (Yobs - Ycal)**2)

        # Append to the history
        self.history.append((tst_cell, tst_orientation, score))

        # Print some info
        print(
            "Cell: %.3f %.3f %.3f %.3f %.3f %.3f; Phi: %.3f %.3f %.3f; RMSD: %.3f"
            % (tuple(self.crystal.get_unit_cell().parameters()) +
               tuple(tst_orientation) + tuple((sqrt(score / len(Xobs)), ))))
        return score

    def generate_predictions(self, experiment, reflections, parameters):

        # Create the mosaicity model
        parameterisation = MosaicityParameterisation(parameters)

        # The crystal A and beam s0
        A = matrix.sqr(experiment.crystal.get_A())
        s0 = matrix.col(experiment.beam.get_s0())
        s0_length = s0.length()

        # Compute all the vectors
        s1_cal = flex.vec3_double()
        s2_cal = flex.vec3_double()
        for i in range(len(reflections)):

            # Compute the reciprocal lattice vector
            h = matrix.col(reflections[i]["miller_index"])
            r = A * h
            s2 = s0 + r

            # Rotate the covariance matrix
            R = compute_change_of_basis_operation(s0, s2)
            S = R * parameterisation.sigma() * R.transpose()
            mu = R * s2
            assert abs(1 - mu.normalize().dot(matrix.col((0, 0, 1)))) < 1e-7

            # Partition the mean vector
            mu1 = matrix.col((mu[0], mu[1]))
            mu2 = mu[2]

            # Partition the covariance matrix
            S11 = matrix.sqr((S[0], S[1], S[3], S[4]))
            S12 = matrix.col((S[2], S[5]))
            S21 = matrix.col((S[6], S[7])).transpose()
            S22 = S[8]

            # Compute the conditional mean
            mubar = mu1 + S12 * (1 / S22) * (s0_length - mu2)

            # Compute the vector and rotate
            v = matrix.col(
                (mubar[0], mubar[1], s0_length)).normalize() * s0_length
            s1 = R.transpose() * v

            # Append the 2 vectors
            s1_cal.append(s1)
            s2_cal.append(s2)

        # Return the predicted vectors
        return s1_cal, s2_cal
示例#21
0
def test(args=[]):

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
        include scope dials.tests.algorithms.refinement.geometry_phil
        include scope dials.tests.algorithms.refinement.minimiser_phil
        """,
        process_includes=True,
    )

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1",
    )

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2",
    )

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for an 18 degree sequence
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 180),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(180)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi / 10)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal1,
            imageset=None,
        ))
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal2,
            imageset=None,
        ))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2.0, 2.0, 2.0])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.5 Angstrom sphere for crystal1
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices1 = index_generator.to_array()

    # All indices in a 2.5 Angstrom sphere for crystal2
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices2 = index_generator.to_array()

    # Predict rays within the sequence range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1["id"] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices2, experiment_id=1)
    obs_refs2["id"] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1["xyzobs.mm.value"] = obs_refs1["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 18.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.0)**2)
    obs_refs1["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.0)**2)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    # scan static first
    params = phil_scope.fetch(source=parse("")).extract()
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # Ensure all models have scan-varying state set
    # (https://github.com/dials/dials/issues/798)
    refined_experiments = refiner.get_experiments()
    sp = [xl.get_num_scan_points() for xl in refined_experiments.crystals()]

    assert sp.count(181) == 2
示例#22
0
class Apple(object):
    def __init__(self, reflection_file, experiment_file):

        data = pickle.load(open(reflection_file, "rb"))

        self.data = data.select(data["intensity.sum.variance"] > 0)

        i = data["intensity.sum.value"]
        v = data["intensity.sum.variance"]
        s = flex.sqrt(v)
        self.i_s = i / s

        self.scale = 2

        from dxtbx.model.experiment_list import ExperimentListFactory

        expt = ExperimentListFactory.from_json_file(experiment_file)
        panel = expt.detectors()[0][0]
        crystal = expt.crystals()[0]
        self.s0 = matrix.col(expt.beams()[0].get_s0())
        wavelength = expt.beams()[0].get_wavelength()

        # make a list of observed q positions

        self.qobs = []
        for j in range(data.size()):
            x, y, z = data["xyzobs.px.value"][j]
            p = matrix.col(panel.get_pixel_lab_coord((x, y)))
            q = p.normalize() / wavelength - self.s0
            self.qobs.append(q)

        self.wavelength = wavelength
        self.panel = panel
        self.beam = expt.beams()[0]
        self.crystal = crystal

        # slurp data from $somewhere

        imageset = expt.imagesets()[0]
        self.raw_data = imageset.get_raw_data(0)[0]
        self.imageset = imageset

        return

    def load(self, filename):
        from dxtbx import load

        i = load(filename)
        self.raw_data = i.get_raw_data()
        return

    def refine(self, do_print=False):
        crystal = self.crystal
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation,
            CrystalOrientationParameterisation,
        )

        self.cucp = CrystalUnitCellParameterisation(crystal)
        self.cop = CrystalOrientationParameterisation(crystal)

        self.zero()

        # 0-point and deltas
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        initial = crystal.get_unit_cell()
        self.cells = []
        self.best_score = 1e99
        initial_score = self.target(values)
        doohicky = simple_simplex(values, offset, self, 2000)
        best = doohicky.get_solution()
        if do_print:
            print("Initial cell:", initial)
            print("Final cell:  ", crystal.get_unit_cell())
            print("Score change", initial_score,
                  self.target(best, do_print=False))
        self.best = best

    def plot_map(self, map, filename):
        import matplotlib

        matplotlib.use("Agg")
        from matplotlib import pyplot

        data = map.as_numpy_array()
        fig = pyplot.gcf()
        pyplot.imshow(data, cmap="gray_r")
        pyplot.colorbar()
        pyplot.savefig(filename, dpi=400)
        pyplot.clf()
        return

    def plot_log_map(self, map, filename):
        import matplotlib

        matplotlib.use("Agg")
        from matplotlib import pyplot

        negative = map.as_1d() <= 0
        map.as_1d().set_selected(negative, 1)
        logmap = flex.log10(map.as_double())

        data = logmap.as_numpy_array()
        fig = pyplot.gcf()
        pyplot.imshow(data, cmap="gray_r")
        pyplot.colorbar()
        pyplot.savefig(filename, dpi=400)
        pyplot.clf()
        return

    def render_distance(self):
        distance_map = flex.double(flex.grid(self.raw_data.focus()))
        origin = self.panel.get_origin()
        fast = self.panel.get_fast_axis()
        slow = self.panel.get_slow_axis()
        nfast, nslow = self.panel.get_image_size()

        UB = matrix.sqr(self.crystal.get_A())
        UBi = UB.inverse()

        from dials_scratch import q_map

        distance_map = q_map(self.panel, self.beam, UB, 1)
        return distance_map

    def target(self, vector, do_print=False):
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        if do_print:
            print("Cell: %.3f %.3f %.3f %.3f %.3f %.3f" %
                  tuple(self.crystal.get_unit_cell().parameters()))
            print("Phi(1,2,3): %.3f %.3f %.3f" % tuple(tst_orientation))

        UB = matrix.sqr(self.crystal.get_A())

        score = self.score(UB)

        if score < self.best_score:
            self.best_score = score
            self.cells.append(self.crystal.get_unit_cell().parameters())
        return score

    def score(self, UB):
        score = 0.0
        for j in range(self.data.size()):
            hkl = self.data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            score += (q - qo).length()**2
        return score

    def plotify(self):
        vector = self.best
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        UB = matrix.sqr(self.crystal.get_A())
        data = self.data
        self.maxq = 0
        for j in range(data.size()):
            hkl = data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            print((q - qo).length(), self.i_s[j], self.dq0[j])
            if (q - qo).length() > self.maxq:
                self.maxq = (q - qo).length()

        return

    def get_maxq(self):
        vector = self.best
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        UB = matrix.sqr(self.crystal.get_A())
        data = self.data
        self.maxq = 0
        for j in range(data.size()):
            hkl = data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            if (q - qo).length() > self.maxq:
                self.maxq = (q - qo).length()

        return self.maxq

    def zero(self):
        from scitbx import matrix

        UB = matrix.sqr(self.crystal.get_A())
        data = self.data
        self.dq0 = []
        for j in range(data.size()):
            hkl = data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            self.dq0.append((q - qo).length())

        return

    def get_signal_mask(self):
        if hasattr(self, "signal_mask"):
            return self.signal_mask
        distance_map = self.render_distance()
        maxq = self.get_maxq()
        self.signal_mask = distance_map.as_1d() < (self.scale * maxq)
        self.signal_mask.reshape(self.raw_data.accessor())
        return self.signal_mask

    def make_background(self):
        import copy

        if hasattr(self, "background"):
            return self.background

        # raw background data
        background = copy.deepcopy(self.raw_data).as_double()

        # mask out the signal areas
        mask = self.get_signal_mask()
        background.as_1d().set_selected(mask.as_1d(), 0.0)
        inv_mask = (~mask).as_1d().as_int()
        inv_mask.reshape(self.raw_data.accessor())

        from dials.algorithms.image.filter import summed_area
        from dials.array_family import flex

        summed_background = summed_area(background, (5, 5))
        summed_mask = summed_area(inv_mask, (5, 5))
        mean_background = summed_background / summed_mask.as_double()
        background.as_1d().set_selected(mask.as_1d(), mean_background.as_1d())

        self.background = background
        return background

    def get_background_subtracted_spots(self):
        if hasattr(self, "background_subtracted_spots"):
            return self.background_subtracted_spots
        mask = self.get_signal_mask()
        background = self.make_background()

        import copy

        background_subtracted_spots = self.raw_data.as_double() - background
        background_subtracted_spots.as_1d().set_selected(~mask.as_1d(), 0)
        self.background_subtracted_spots = background_subtracted_spots
        return background_subtracted_spots

    def integrate(self):
        from scitbx.array_family import flex
        from scitbx import matrix

        nslow, nfast = self.raw_data.focus()

        binary_map = self.get_signal_mask().as_1d().as_int()
        binary_map.reshape(flex.grid(1, nslow, nfast))

        # find connected regions of spots - hacking code for density modification
        # this is used to determine the integration masks for the reflections
        from cctbx import masks
        from cctbx import uctbx

        uc = uctbx.unit_cell((1, nslow, nfast, 90, 90, 90))
        flood_fill = masks.flood_fill(binary_map, uc)
        binary_map = binary_map.as_1d()

        coms = flood_fill.centres_of_mass()

        # now iterate through these blobs, find the intensity and error, and
        # find the Miller index

        UB = matrix.sqr(self.crystal.get_A())
        UBi = UB.inverse()

        winv = 1 / self.beam.get_wavelength()

        data = self.raw_data.as_double()
        background = self.make_background()

        from dials.array_family import flex

        reflections = flex.reflection_table()

        num_pixels_foreground = flex.int()
        background_mean = flex.double()
        background_sum_value = flex.double()
        background_sum_variance = flex.double()
        intensity_sum_value = flex.double()
        intensity_sum_variance = flex.double()
        miller_index = flex.miller_index()
        xyzcal_px = flex.vec3_double()
        bbox = flex.int6()
        dq = flex.double()

        fast = flex.int(self.raw_data.size(), -1)
        fast.reshape(self.raw_data.accessor())
        slow = flex.int(self.raw_data.size(), -1)
        slow.reshape(self.raw_data.accessor())

        nslow, nfast = fast.focus()
        for j in range(nslow):
            for i in range(nfast):
                fast[(j, i)] = i
                slow[(j, i)] = j

        for j in range(flood_fill.n_voids()):
            sel = binary_map == (j + 2)
            pixels = data.select(sel)
            if flex.min(pixels) < 0:
                continue

            bg_pixels = background.select(sel)
            n = pixels.size()
            d = flex.sum(pixels)
            b = flex.sum(bg_pixels)
            s = d - b

            # FIXME is this the best centre of mass? if this spot is actually
            # there, probably no, but if not there (i.e. no spot) then background
            # subtracted centre of mass likely to be very noisy - keeping the
            # background in likely to make this a little more stable
            xy = coms[j][2], coms[j][1]

            fs = fast.select(sel)
            ss = slow.select(sel)

            fd = fs.as_double()
            sd = ss.as_double()

            p = matrix.col(
                self.panel.get_pixel_lab_coord(xy)).normalize() * winv
            q = p - matrix.col(self.beam.get_s0())
            hkl = UBi * q
            ihkl = [int(round(h)) for h in hkl]

            dq.append((q - UB * ihkl).length())

            # puzzle out the bounding boxes - hack here, we have maps with the
            # fast and slow positions in; select from these then find max, min of
            # this selection
            f_min = flex.min(fs)
            f_max = flex.max(fs)

            s_min = flex.min(ss)
            s_max = flex.max(ss)

            bbox.append((f_min, f_max + 1, s_min, s_max + 1, 0, 1))

            num_pixels_foreground.append(n)
            background_mean.append(b / n)
            background_sum_value.append(b)
            background_sum_variance.append(b)
            intensity_sum_value.append(s)
            intensity_sum_variance.append(d + b)
            miller_index.append(ihkl)
            xyzcal_px.append((xy[0], xy[1], 0.0))

        reflections["num_pixels.foreground"] = num_pixels_foreground
        reflections["background.mean"] = background_mean
        reflections["background.sum.value"] = background_sum_value
        reflections["background.sum.variance"] = background_sum_variance
        reflections["intensity.sum.value"] = intensity_sum_value
        reflections["intensity.sum.variance"] = intensity_sum_variance
        reflections["miller_index"] = miller_index
        reflections["xyzcal.px"] = xyzcal_px
        reflections["id"] = flex.int(miller_index.size(), 0)
        reflections["panel"] = flex.size_t(miller_index.size(), 0)
        reflections["bbox"] = bbox
        reflections["dq"] = dq

        from dials.algorithms.shoebox import MaskCode

        reflections["shoebox"] = flex.shoebox(reflections["panel"],
                                              reflections["bbox"],
                                              allocate=True)

        reflections.extract_shoeboxes(self.imageset, verbose=True)

        # now iterate through these (how?!) and assign mask values
        fg = self.get_signal_mask()
        for reflection in reflections:
            s = reflection["shoebox"]
            b = reflection["bbox"]
            dz, dy, dx = s.mask.focus()
            for j in range(dy):
                for i in range(dx):
                    _i = b[0]
                    _j = b[2]
                    if fg[(j + _j, i + _i)]:
                        m = MaskCode.Valid | MaskCode.Foreground
                    else:
                        m = MaskCode.Valid | MaskCode.Background
                    s.mask[(0, j, i)] = m

        return reflections

    def find_spots(self, min_spot_size=2, max_spot_size=100):
        from dials.algorithms.spot_finding.threshold import XDSThresholdStrategy
        from dials.model.data import PixelList
        from dials.model.data import PixelListLabeller

        image = self.raw_data
        mask = self.imageset.get_mask(0)[0]

        threshold_image = XDSThresholdStrategy()

        threshold_mask = threshold_image(image, mask)
        plist = PixelList(0, image, threshold_mask)

        pixel_labeller = PixelListLabeller()
        pixel_labeller.add(plist)

        creator = flex.PixelListShoeboxCreator(pixel_labeller, 0, 0, True,
                                               min_spot_size, max_spot_size,
                                               False)
        shoeboxes = creator.result()

        # turns out we need to manually filter the list to get a sensible answer
        size = creator.spot_size()
        big = size > max_spot_size
        small = size < min_spot_size
        bad = big | small
        shoeboxes = shoeboxes.select(~bad)

        centroid = shoeboxes.centroid_valid()
        intensity = shoeboxes.summed_intensity()
        observed = flex.observation(shoeboxes.panels(), centroid, intensity)

        reflections = flex.reflection_table(observed, shoeboxes)
        return reflections

    def index(self, reflections):

        # FIXME allow for the fact that there could be > 1 lattice on here to
        # e.g. assign index over small spherical radius

        miller_index = flex.miller_index()
        UB = matrix.sqr(self.crystal.get_A())
        UBi = UB.inverse()

        self.qobs = []

        for refl in reflections:
            x, y, z = refl["xyzobs.px.value"]
            p = matrix.col(self.panel.get_pixel_lab_coord((x, y)))
            q = p.normalize() / self.wavelength - self.s0
            self.qobs.append(q)
            hkl = UBi * q
            ihkl = [int(round(h)) for h in hkl]
            miller_index.append(ihkl)

        reflections["miller_index"] = miller_index
        self.data = reflections
        return reflections
示例#23
0
文件: dx.py 项目: dials/dials_scratch
def tst_use_in_stills_parameterisation_for_crystal(crystal_param=0):

    # test use of analytical expression in stills prediction parameterisation

    from scitbx import matrix
    from math import pi, sqrt, atan2
    import random

    print
    print "Test use of analytical expressions in stills prediction " + "parameterisation for crystal parameters"

    # crystal model
    from dxtbx.model.crystal import crystal_model
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    crystal = crystal_model((20, 0, 0), (0, 30, 0), (0, 0, 40), space_group_symbol="P 1")
    # random reorientation
    e = matrix.col((random.random(), random.random(), random.random())).normalize()
    angle = random.random() * 180
    crystal.rotate_around_origin(e, angle)

    wl = 1.1
    s0 = matrix.col((0, 0, 1 / wl))
    s0u = s0.normalize()

    # these are stills, but need a rotation axis for the Reeke algorithm
    axis = matrix.col((1, 0, 0))

    # crystal parameterisations
    xlop = CrystalOrientationParameterisation(crystal)
    xlucp = CrystalUnitCellParameterisation(crystal)

    # Find some reflections close to the Ewald sphere
    from dials.algorithms.spot_prediction.reeke import reeke_model

    U = crystal.get_U()
    B = crystal.get_B()
    UB = U * B
    dmin = 4
    hkl = reeke_model(UB, UB, axis, s0, dmin, margin=1).generate_indices()

    # choose first reflection for now, calc quantities relating to q
    h = matrix.col(hkl[0])
    q = UB * h
    q0 = q.normalize()
    q_scalar = q.length()
    qq = q_scalar * q_scalar

    # calculate the axis of closest rotation
    e1 = q0.cross(s0u).normalize()

    # calculate c0, a vector orthogonal to s0u and e1
    c0 = s0u.cross(e1).normalize()

    # calculate q1
    q1 = q0.cross(e1).normalize()

    # calculate DeltaPsi
    a = 0.5 * qq * wl
    b = sqrt(qq - a * a)
    r = -1.0 * a * s0u + b * c0
    DeltaPsi = -1.0 * atan2(r.dot(q1), r.dot(q0))

    # Checks on the reflection prediction
    from libtbx.test_utils import approx_equal

    # 1. check r is on the Ewald sphere
    s1 = s0 + r
    assert approx_equal(s1.length(), s0.length())
    # 2. check DeltaPsi is correct
    tst = q.rotate_around_origin(e1, DeltaPsi)
    assert approx_equal(tst, r)

    # choose the derivative with respect to a particular parameter.
    if crystal_param < 3:
        dU_dp = xlop.get_ds_dp()[crystal_param]
        dq = dU_dp * B * h
    else:
        dB_dp = xlucp.get_ds_dp()[crystal_param - 3]
        dq = U * dB_dp * h

    # NKS method of calculating d[q0]/dp
    q_dot_dq = q.dot(dq)
    dqq = 2.0 * q_dot_dq
    dq_scalar = dqq / q_scalar
    dq0_dp = (q_scalar * dq - (q_dot_dq * q0)) / qq
    # orthogonal to q0, as expected.
    print "NKS [q0].(d[q0]/dp) = {0} (should be 0.0)".format(q0.dot(dq0_dp))

    # intuitive method of calculating d[q0]/dp, based on the fact that
    # it must be orthogonal to q0, i.e. in the plane containing q1 and e1
    scaled = dq / q.length()
    dq0_dp = scaled.dot(q1) * q1 + scaled.dot(e1) * e1
    # orthogonal to q0, as expected.
    print "DGW [q0].(d[q0]/dp) = {0} (should be 0.0)".format(q0.dot(dq0_dp))

    # So it doesn't matter which method I use to calculate d[q0]/dp, as
    # both methods give the same results

    # use the fact that -e1 == q0.cross(q1) to redefine the derivative d[e1]/dp
    # from Sauter et al. (2014) (A.22)
    de1_dp = -1.0 * dq0_dp.cross(q1)

    # this *is* orthogonal to e1, as expected.
    print "[e1].(d[e1]/dp) = {0} (should be 0.0)".format(e1.dot(de1_dp))

    # calculate (d[r]/d[e1])(d[e1]/dp) analytically
    from scitbx.array_family import flex
    from dials_refinement_helpers_ext import dRq_de

    dr_de1 = matrix.sqr(dRq_de(flex.double([DeltaPsi]), flex.vec3_double([e1]), flex.vec3_double([q]))[0])
    print "Analytical calculation for (d[r]/d[e1])(d[e1]/dp):"
    print dr_de1 * de1_dp

    # now calculate using finite differences.
    dp = 1.0e-8
    del_e1 = de1_dp * dp
    e1f = e1 + del_e1 * 0.5
    rfwd = q.rotate_around_origin(e1f, DeltaPsi)
    e1r = e1 - del_e1 * 0.5
    rrev = q.rotate_around_origin(e1r, DeltaPsi)

    print "Finite difference estimate for (d[r]/d[e1])(d[e1]/dp):"
    print (rfwd - rrev) * (1 / dp)

    print "These are essentially the same :-)"
示例#24
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import \
        DetectorParameterisationSinglePanel
    from dials.algorithms.refinement.parameterisation.beam_parameters import \
        BeamParameterisation
    from dials.algorithms.refinement.parameterisation.crystal_parameters import \
        CrystalOrientationParameterisation, CrystalUnitCellParameterisation

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import \
        symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction import ScansRayPredictor, \
      ExperimentsPredictor
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import \
        XYPhiPredictionParameterisation # implicit import

    # Imports for the target function
    from dials.algorithms.refinement.target import \
        LeastSquaresPositionalResidualWithRmsdCutoff # implicit import

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse("""
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
                        process_includes=True)

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1")

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2")

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(image_range=(1, 1800),
                          exposure_times=0.1,
                          oscillation=(0, 0.1),
                          epochs=range(1800),
                          deg=True)
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0., pi)
    assert approx_equal(im_width, 0.1 * pi / 180.)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal1,
                   imageset=None))
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal2,
                   imageset=None))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    #xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    #pred_param = XYPhiPredictionParameterisation(experiments,
    #  [det_param], [s0_param], [xlo_param], [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2., 2., 2.])]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2., 2., 2.])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    #print "Reflections will be generated with the following geometry:"
    #print mybeam
    #print mydetector
    #print crystal1
    #print crystal2

    # All indices in a 2.0 Angstrom sphere for crystal1
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices1 = index_generator.to_array()

    # All indices in a 2.0 Angstrom sphere for crystal2
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices2 = index_generator.to_array()

    # Predict rays within the sweep range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1['id'] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices1, experiment_id=1)
    obs_refs2['id'] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1['xyzobs.mm.value'] = obs_refs1['xyzcal.mm']
    obs_refs2['xyzobs.mm.value'] = obs_refs2['xyzcal.mm']

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.)**2)
    obs_refs1['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.)**2)
    obs_refs2['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

    #print "Total number of reflections excited for crystal1", len(obs_refs1)
    #print "Total number of reflections excited for crystal2", len(obs_refs2)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    #print "Initial values of parameters are"
    #msg = "Parameters: " + "%.5f " * len(pred_param)
    #print msg % tuple(pred_param.get_param_vals())
    #print

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope
    params = phil_scope.fetch(source=parse('')).extract()

    # in case we want a plot
    params.refinement.refinery.journal.track_parameter_correlation = True

    # scan static first
    from dials.algorithms.refinement.refiner import RefinerFactory
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()
示例#25
0
class CrystalRefiner(object):
    """
    A class to perform refinement of crystal parameters

    """
    def __init__(self, experiment, reflections, mosaicity, params):
        """
        Perform the refinement

        :param experiment: The experiment
        :param reflections: The reflections
        :param mosaicity: The mosaicity
        :param params: The parameters

        """
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation, )
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalOrientationParameterisation, )
        from dials_scratch.jmp.stills import Model
        from dials.array_family import flex
        from scitbx import simplex
        from math import sqrt

        # Store the input
        self.experiment = experiment
        self.reflections = reflections
        self.mosaicity = mosaicity
        self.params = params

        # Get the data and image mask
        data = self.experiment.imageset.get_raw_data(0)[0]
        mask = self.experiment.imageset.get_mask(0)[0]

        # Initialise the model
        self.model = Model(
            beam=self.experiment.beam,
            detector=self.experiment.detector,
            crystal=self.experiment.crystal,
            reflections=self.reflections,
            image_data=data,
            image_mask=mask,
            mosaicity=self.mosaicity,
            bandpass=0.0,
            foreground_limit=0.3,
            background_limit=0.5,
            num_samples=self.params.refinement.profile.num_samples,
        )

        # Get the crystal model and the parameterisation
        self.crystal = self.experiment.crystal
        self.cucp = CrystalUnitCellParameterisation(self.crystal)
        self.cop = CrystalOrientationParameterisation(self.crystal)

        # Get the current values and generate some offsets
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        # The optimization history
        self.history = []

        # Get the initial cell and initial score
        initial_cell = self.crystal.get_unit_cell()
        initial_score = self.target(values)

        # Perform the optimization
        optimizer = simple_simplex(values, offset, self, 2000)
        result = optimizer.get_solution()
        print("Initial cell:", initial_cell)
        print("Final cell:  ", self.crystal.get_unit_cell())

        # Compute RMSD
        xcal, ycal, _ = self.model.observed().parts()
        xobs, yobs, _ = self.model.predicted().parts()
        rmsd_x = sqrt(flex.sum((xcal - xobs)**2) / len(xcal))
        rmsd_y = sqrt(flex.sum((ycal - yobs)**2) / len(ycal))
        print("RMSD X, Y (px): %f, %f" % (rmsd_x, rmsd_y))

    def target(self, vector):
        """
        The target function

        """
        from dials.array_family import flex
        from math import sqrt

        # Get the cell and orientation parameters
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)

        # Update the cell and orientation parameters
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]
        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        # Update the model
        self.model.crystal = self.crystal
        self.model.update(pixel_lookup=False)

        # Get the observed and predicted position
        T = self.model.success()
        O = self.model.observed()
        C = self.model.predicted()

        # Select only those successes
        selection = T == True
        Xobs, Yobs, Zobs = O.select(selection).parts()
        Xcal, Ycal, Zcal = C.select(selection).parts()

        # Compute the rmsd between observed and calculated
        score = flex.sum((Xobs - Xcal)**2 + (Yobs - Ycal)**2 +
                         (Zobs - Zcal)**2)

        # Append to the history
        self.history.append((tst_cell, tst_orientation, score))

        # Print some info
        print(
            "Cell: %.3f %.3f %.3f %.3f %.3f %.3f; Phi: %.3f %.3f %.3f; RMSD: %.3f"
            % (tuple(self.crystal.get_unit_cell().parameters()) +
               tuple(tst_orientation) + tuple((sqrt(score / len(Xobs)), ))))
        return score
def test1():

  dials_regression = libtbx.env.find_in_repositories(
    relative_path="dials_regression",
    test=os.path.isdir)

  # use a datablock that contains a CS-PAD detector description
  data_dir = os.path.join(dials_regression, "refinement_test_data",
                          "hierarchy_test")
  datablock_path = os.path.join(data_dir, "datablock.json")
  assert os.path.exists(datablock_path)

  # load models
  from dxtbx.datablock import DataBlockFactory
  datablock = DataBlockFactory.from_serialized_format(datablock_path, check_format=False)
  im_set = datablock[0].extract_imagesets()[0]
  from copy import deepcopy
  detector = deepcopy(im_set.get_detector())
  beam = im_set.get_beam()

  # we'll invent a crystal, goniometer and scan for this test
  from dxtbx.model.crystal import crystal_model
  crystal = crystal_model((40.,0.,0.) ,(0.,40.,0.), (0.,0.,40.),
                          space_group_symbol = "P1")

  from dxtbx.model.experiment import goniometer_factory
  goniometer = goniometer_factory.known_axis((1., 0., 0.))

  # Build a mock scan for a 180 degree sweep
  from dxtbx.model.scan import scan_factory
  sf = scan_factory()
  scan = sf.make_scan(image_range = (1,1800),
                      exposure_times = 0.1,
                      oscillation = (0, 0.1),
                      epochs = range(1800),
                      deg = True)
  sweep_range = scan.get_oscillation_range(deg=False)
  im_width = scan.get_oscillation(deg=False)[1]
  assert sweep_range == (0., pi)
  assert approx_equal(im_width, 0.1 * pi / 180.)

  from dxtbx.model.experiment.experiment_list import ExperimentList, Experiment

  # Build an experiment list
  experiments = ExperimentList()
  experiments.append(Experiment(
        beam=beam, detector=detector, goniometer=goniometer,
        scan=scan, crystal=crystal, imageset=None))

  # simulate some reflections
  refs, ref_predictor = generate_reflections(experiments)

  # move the detector quadrants apart by 2mm both horizontally and vertically
  from dials.algorithms.refinement.parameterisation \
    import DetectorParameterisationHierarchical
  det_param = DetectorParameterisationHierarchical(detector, level=1)
  det_p_vals = det_param.get_param_vals()
  p_vals = list(det_p_vals)
  p_vals[1] += 2
  p_vals[2] -= 2
  p_vals[7] += 2
  p_vals[8] += 2
  p_vals[13] -= 2
  p_vals[14] += 2
  p_vals[19] -= 2
  p_vals[20] -= 2
  det_param.set_param_vals(p_vals)

  # reparameterise the detector at the new perturbed geometry
  det_param = DetectorParameterisationHierarchical(detector, level=1)

  # parameterise other models
  from dials.algorithms.refinement.parameterisation.beam_parameters import \
      BeamParameterisation
  from dials.algorithms.refinement.parameterisation.crystal_parameters import \
      CrystalOrientationParameterisation, CrystalUnitCellParameterisation
  beam_param = BeamParameterisation(beam, goniometer)
  xlo_param = CrystalOrientationParameterisation(crystal)
  xluc_param = CrystalUnitCellParameterisation(crystal)

  # fix beam
  beam_param.set_fixed([True]*3)

  # fix crystal
  xluc_param.set_fixed([True]*6)
  xlo_param.set_fixed([True]*3)

  # parameterisation of the prediction equation
  from dials.algorithms.refinement.parameterisation.prediction_parameters import \
      XYPhiPredictionParameterisation
  from dials.algorithms.refinement.parameterisation.parameter_report import \
      ParameterReporter
  pred_param = XYPhiPredictionParameterisation(experiments,
    [det_param], [beam_param], [xlo_param], [xluc_param])
  param_reporter = ParameterReporter([det_param], [beam_param],
                                     [xlo_param], [xluc_param])

  # reflection manager and target function
  from dials.algorithms.refinement.target import \
    LeastSquaresPositionalResidualWithRmsdCutoff
  from dials.algorithms.refinement.reflection_manager import ReflectionManager
  refman = ReflectionManager(refs, experiments, nref_per_degree=20)

  # set a very tight rmsd target of 1/10000 of a pixel
  target = LeastSquaresPositionalResidualWithRmsdCutoff(experiments,
      ref_predictor, refman, pred_param, restraints_parameterisation=None,
      frac_binsize_cutoff=0.0001)

  # minimisation engine
  from dials.algorithms.refinement.engine \
    import LevenbergMarquardtIterations as Refinery
  refinery = Refinery(target = target,
                      prediction_parameterisation = pred_param,
                      log = None,
                      verbosity = 0,
                      track_step = False,
                      track_gradient = False,
                      track_parameter_correlation = False,
                      max_iterations = 20)

  # Refiner
  from dials.algorithms.refinement.refiner import Refiner
  refiner = Refiner(reflections=refs,
                    experiments=experiments,
                    pred_param=pred_param,
                    param_reporter=param_reporter,
                    refman=refman,
                    target=target,
                    refinery=refinery,
                    verbosity=0)

  history = refiner.run()
  assert history.reason_for_termination == "RMSD target achieved"

  #compare detector with original detector
  orig_det = im_set.get_detector()
  refined_det = refiner.get_experiments()[0].detector

  from scitbx import matrix
  import math
  for op, rp in zip(orig_det, refined_det):
    # compare the origin vectors by...
    o1 = matrix.col(op.get_origin())
    o2 = matrix.col(rp.get_origin())
    # ...their relative lengths
    assert approx_equal(
      math.fabs(o1.length() - o2.length()) / o1.length(), 0, eps=1e-5)
    # ...the angle between them
    assert approx_equal(o1.accute_angle(o2), 0, eps=1e-5)

  print "OK"
  return
示例#27
0
    def __init__(self, experiment, reflections, mosaicity, params):
        """
        Perform the refinement

        :param experiment: The experiment
        :param reflections: The reflections
        :param mosaicity: The mosaicity
        :param params: The parameters

        """
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation, )
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalOrientationParameterisation, )
        from dials_scratch.jmp.stills import Model
        from dials.array_family import flex
        from scitbx import simplex
        from math import sqrt

        # Store the input
        self.experiment = experiment
        self.reflections = reflections
        self.mosaicity = mosaicity
        self.params = params

        # Get the data and image mask
        data = self.experiment.imageset.get_raw_data(0)[0]
        mask = self.experiment.imageset.get_mask(0)[0]

        # Initialise the model
        self.model = Model(
            beam=self.experiment.beam,
            detector=self.experiment.detector,
            crystal=self.experiment.crystal,
            reflections=self.reflections,
            image_data=data,
            image_mask=mask,
            mosaicity=self.mosaicity,
            bandpass=0.0,
            foreground_limit=0.3,
            background_limit=0.5,
            num_samples=self.params.refinement.profile.num_samples,
        )

        # Get the crystal model and the parameterisation
        self.crystal = self.experiment.crystal
        self.cucp = CrystalUnitCellParameterisation(self.crystal)
        self.cop = CrystalOrientationParameterisation(self.crystal)

        # Get the current values and generate some offsets
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        # The optimization history
        self.history = []

        # Get the initial cell and initial score
        initial_cell = self.crystal.get_unit_cell()
        initial_score = self.target(values)

        # Perform the optimization
        optimizer = simple_simplex(values, offset, self, 2000)
        result = optimizer.get_solution()
        print("Initial cell:", initial_cell)
        print("Final cell:  ", self.crystal.get_unit_cell())

        # Compute RMSD
        xcal, ycal, _ = self.model.observed().parts()
        xobs, yobs, _ = self.model.predicted().parts()
        rmsd_x = sqrt(flex.sum((xcal - xobs)**2) / len(xcal))
        rmsd_y = sqrt(flex.sum((ycal - yobs)**2) / len(ycal))
        print("RMSD X, Y (px): %f, %f" % (rmsd_x, rmsd_y))
def test():
    # Build models, with a larger crystal than default in order to get plenty of
    # reflections on the 'still' image
    overrides = """
  geometry.parameters.crystal.a.length.range=40 50;
  geometry.parameters.crystal.b.length.range=40 50;
  geometry.parameters.crystal.c.length.range=40 50;
  geometry.parameters.random_seed = 42"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 3 degree sweep
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1),
        exposure_times=0.1,
        oscillation=(0, 3.0),
        epochs=list(range(1)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)

    # Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Create a scans ExperimentList, only for generating reflections
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Create a stills ExperimentList
    stills_experiments = ExperimentList()
    stills_experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   crystal=mycrystal,
                   imageset=None))

    # Generate rays - only to work out which hkls are predicted
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()
    rays = ray_predictor(indices)

    # Make a standard reflection_table and copy in the ray data
    reflections = flex.reflection_table.empty_standard(len(rays))
    reflections.update(rays)

    # Build a standard prediction parameterisation for the stills experiment to do
    # FD calculation (not used for its analytical gradients)
    pred_param = StillsPredictionParameterisation(
        stills_experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # Make a managed SphericalRelpStillsReflectionPredictor reflection predictor
    # for the first (only) experiment
    ref_predictor = Predictor(stills_experiments)

    # Predict these reflections in place. Must do this ahead of calculating
    # the analytical gradients so quantities like s1 are correct
    ref_predictor.update()
    ref_predictor.predict(reflections)

    # calculate analytical gradients
    ag = AnalyticalGradients(
        stills_experiments,
        detector_parameterisation=det_param,
        beam_parameterisation=s0_param,
        xl_orientation_parameterisation=xlo_param,
        xl_unit_cell_parameterisation=xluc_param,
    )
    an_grads = ag.get_beam_gradients(reflections)
    an_grads.update(ag.get_crystal_orientation_gradients(reflections))
    an_grads.update(ag.get_crystal_unit_cell_gradients(reflections))

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grads = []
    p_names = pred_param.get_param_names()
    for i, delta in enumerate(deltas):

        # save parameter value
        val = p_vals[i]

        # calc reverse state
        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        ref_predictor.update()
        ref_predictor.predict(reflections)

        x, y, _ = reflections["xyzcal.mm"].deep_copy().parts()
        s1 = reflections["s1"].deep_copy()
        rev_state = s1

        # calc forward state
        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        ref_predictor.update()
        ref_predictor.predict(reflections)

        x, y, _ = reflections["xyzcal.mm"].deep_copy().parts()
        s1 = reflections["s1"].deep_copy()
        fwd_state = s1

        # reset parameter to saved value
        p_vals[i] = val

        # finite difference - currently for s1 only
        fd = fwd_state - rev_state
        inv_delta = 1.0 / delta
        s1_grads = fd * inv_delta

        # store gradients
        fd_grads.append({"name": p_names[i], "ds1": s1_grads})

    # return to the initial state
    pred_param.set_param_vals(p_vals)

    for i, fd_grad in enumerate(fd_grads):

        ## compare FD with analytical calculations
        print("\n\nParameter {0}: {1}".format(i, fd_grad["name"]))

        print("d[s1]/dp for the first reflection")
        print("finite diff", fd_grad["ds1"][0])
        try:
            an_grad = an_grads[fd_grad["name"]]
        except KeyError:
            continue

        print("checking analytical vs finite difference gradients for s1")
        for a, b in zip(fd_grad["ds1"], an_grad["ds1"]):
            assert a == pytest.approx(b, abs=1e-7)
示例#29
0
def test(init_test):

    single_panel_detector = init_test.experiments_single_panel.detectors()[0]
    multi_panel_detector = init_test.experiments_multi_panel.detectors()[0]
    beam = init_test.experiments_single_panel.beams()[0]
    gonio = init_test.experiments_single_panel.goniometers()[0]
    crystal = init_test.experiments_single_panel.crystals()[0]

    # Parameterise the models
    det_param = DetectorParameterisationSinglePanel(single_panel_detector)
    s0_param = BeamParameterisation(beam, gonio)
    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    multi_det_param = DetectorParameterisationMultiPanel(multi_panel_detector, beam)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Link model parameterisations together into a parameterisation of the
    # prediction equation, first for the single panel detector
    pred_param = XYPhiPredictionParameterisation(
        init_test.experiments_single_panel,
        [det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    # ... and now for the multi-panel detector
    pred_param2 = XYPhiPredictionParameterisation(
        init_test.experiments_multi_panel,
        [multi_det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detectors by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
    det_param.set_param_vals(p_vals)

    multi_det_p_vals = multi_det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(multi_det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
    multi_det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(
        init_test.observations_single_panel, init_test.experiments_single_panel
    )
    refman2 = ReflectionManager(
        init_test.observations_multi_panel, init_test.experiments_multi_panel
    )

    ###############################
    # Set up the target functions #
    ###############################

    target = LeastSquaresPositionalResidualWithRmsdCutoff(
        init_test.experiments_single_panel,
        ScansExperimentsPredictor(init_test.experiments_single_panel),
        refman,
        pred_param,
        restraints_parameterisation=None,
    )
    target2 = LeastSquaresPositionalResidualWithRmsdCutoff(
        init_test.experiments_multi_panel,
        ScansExperimentsPredictor(init_test.experiments_multi_panel),
        refman2,
        pred_param2,
        restraints_parameterisation=None,
    )

    #################################
    # Set up the refinement engines #
    #################################

    refiner = setup_minimiser.Extract(master_phil, target, pred_param).refiner
    refiner2 = setup_minimiser.Extract(master_phil, target2, pred_param2).refiner

    refiner.run()

    # reset parameters and run refinement with the multi panel detector
    s0_param.set_param_vals(s0_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    refiner2.run()

    # same number of steps
    assert refiner.get_num_steps() == refiner2.get_num_steps()

    # same rmsds
    for rmsd, rmsd2 in zip(refiner.history["rmsd"], refiner2.history["rmsd"]):
        assert approx_equal(rmsd, rmsd2)

    # same parameter values each step
    for params, params2 in zip(
        refiner.history["parameter_vector"], refiner.history["parameter_vector"]
    ):
        assert approx_equal(params, params2)
experiments.append(Experiment(
      beam=mybeam, detector=mydetector, goniometer=mygonio,
      scan=myscan, crystal=crystal1, imageset=None))
experiments.append(Experiment(
      beam=mybeam, detector=mydetector, goniometer=mygonio,
      scan=myscan, crystal=crystal2, imageset=None))

assert len(experiments.detectors()) == 1

##########################################################
# Parameterise the models (only for perturbing geometry) #
##########################################################

det_param = DetectorParameterisationSinglePanel(mydetector)
s0_param = BeamParameterisation(mybeam, mygonio)
xl1o_param = CrystalOrientationParameterisation(crystal1)
xl1uc_param = CrystalUnitCellParameterisation(crystal1)
xl2o_param = CrystalOrientationParameterisation(crystal2)
xl2uc_param = CrystalUnitCellParameterisation(crystal2)

# Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
s0_param.set_fixed([True, False, True])

# Fix crystal parameters
#xluc_param.set_fixed([True, True, True, True, True, True])

########################################################################
# Link model parameterisations together into a parameterisation of the #
# prediction equation                                                  #
########################################################################
def test_single_crystal_restraints_gradients():
    """Simple test with a single triclinic crystal restrained to a target unit cell"""

    from dxtbx.model.experiment_list import Experiment, ExperimentList

    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )
    from dials.test.algorithms.refinement.setup_geometry import Extract

    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 72 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 720),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    # Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Create an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Build a prediction parameterisation
    pred_param = XYPhiPredictionParameterisation(
        experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # Build a restraints parameterisation
    rp = RestraintsParameterisation(
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # make a unit cell target
    sigma = 1.0
    uc = mycrystal.get_unit_cell().parameters()
    target_uc = [random.gauss(e, sigma) for e in uc]

    rp.add_restraints_to_target_xl_unit_cell(experiment_id=0,
                                             values=target_uc,
                                             sigma=[sigma] * 6)

    # get analytical values and gradients
    vals, grads, weights = rp.get_residuals_gradients_and_weights()
    assert len(vals) == rp.num_residuals

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grad = []

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        rev_state, foo, bar = rp.get_residuals_gradients_and_weights()
        rev_state = flex.double(rev_state)

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        fwd_state, foo, bar = rp.get_residuals_gradients_and_weights()
        fwd_state = flex.double(fwd_state)

        p_vals[i] = val

        fd = (fwd_state - rev_state) / delta
        fd_grad.append(fd)

    # for comparison, fd_grad is a list of flex.doubles, each of which corresponds
    # to a column of the sparse matrix grads.
    for i, fd in enumerate(fd_grad):
        # extract dense column from the sparse matrix
        an = grads.col(i).as_dense_vector()

        assert an == pytest.approx(fd, abs=1e-5)
示例#32
0
class ModelState(object):
    """
    A class to keep track of the model state

    """
    def __init__(
        self,
        experiment,
        mosaicity_parameterisation,
        wavelength_parameterisation=None,
        fix_mosaic_spread=False,
        fix_wavelength_spread=True,
        fix_unit_cell=False,
        fix_orientation=False,
    ):
        """
        Initialise the model state

        """

        # Save the crystal model
        self.experiment = experiment
        self.crystal = experiment.crystal

        # The U and P parameterisation
        self._U_parameterisation = CrystalOrientationParameterisation(
            self.crystal)
        self._B_parameterisation = CrystalUnitCellParameterisation(
            self.crystal)

        # The M and L parameterisations
        self._M_parameterisation = mosaicity_parameterisation
        self._L_parameterisation = wavelength_parameterisation

        # Set the flags to fix parameters
        self._is_mosaic_spread_fixed = fix_mosaic_spread
        self._is_wavelength_spread_fixed = fix_wavelength_spread
        self._is_unit_cell_fixed = fix_unit_cell
        self._is_orientation_fixed = fix_orientation

        # Check wavelength parameterisation
        if not self.is_wavelength_spread_fixed:
            assert self._L_parameterisation is not None

    @property
    def is_orientation_fixed(self) -> bool:
        return self._is_orientation_fixed

    @property
    def is_unit_cell_fixed(self) -> bool:
        return self._is_unit_cell_fixed

    @property
    def is_mosaic_spread_fixed(self) -> bool:
        return self._is_mosaic_spread_fixed

    @property
    def is_mosaic_spread_angular(self) -> bool:
        return self._M_parameterisation.is_angular()

    @property
    def is_wavelength_spread_fixed(self) -> bool:
        return self._is_wavelength_spread_fixed

    @property
    def unit_cell(self):
        return self.crystal.get_unit_cell()

    @property
    def U_matrix(self) -> np.array:
        return np.array([self.crystal.get_U()], dtype=np.float64).reshape(3, 3)

    @property
    def B_matrix(self) -> np.array:
        return np.array([self.crystal.get_B()], dtype=np.float64).reshape(3, 3)

    @property
    def A_matrix(self) -> np.array:
        return np.array([self.crystal.get_A()], dtype=np.float64).reshape(3, 3)

    @property
    def mosaicity_covariance_matrix(self) -> np.array:
        return self._M_parameterisation.sigma()

    @property
    def wavelength_spread(self) -> flex.double:
        if self._L_parameterisation is not None:
            return self._L_parameterisation.sigma()
        return flex.double()

    @property
    def U_params(self) -> np.array:
        """Get the parameters of the orientation parameterisation"""
        return np.array(self._U_parameterisation.get_param_vals(),
                        dtype=np.float64)

    @U_params.setter
    def U_params(self, params) -> None:
        self._U_parameterisation.set_param_vals(tuple(
            float(i) for i in params))

    @property
    def B_params(self) -> np.array:
        """Get the parameters of the orientation parameterisation"""
        return np.array(self._B_parameterisation.get_param_vals(),
                        dtype=np.float64)

    @B_params.setter
    def B_params(self, params) -> None:
        self._B_parameterisation.set_param_vals(tuple(
            float(i) for i in params))

    @property
    def M_params(self) -> np.array:
        "Parameters of the mosaicity parameterisation"
        return self._M_parameterisation.parameters

    @M_params.setter
    def M_params(self, params) -> None:
        self._M_parameterisation.parameters = params

    @property
    def L_params(self) -> np.array:
        "Parameters of the Lambda (wavelength) parameterisation"
        if self._L_parameterisation is not None:
            return np.array(self._L_parameterisation.parameters,
                            dtype=np.float64)
        return np.array([])

    @L_params.setter
    def L_params(self, params: flex.double) -> None:
        if self._L_parameterisation is not None:
            self._L_parameterisation.parameters = params

    @property
    def dU_dp(self) -> np.array:
        """
        Get the first derivatives of U w.r.t its parameters

        """
        ds_dp = self._U_parameterisation.get_ds_dp()
        n = len(ds_dp)
        s = np.array([ds_dp[i] for i in range(n)],
                     dtype=np.float64).reshape(n, 3, 3)
        return s

    @property
    def dB_dp(self) -> np.array:
        """
        Get the first derivatives of B w.r.t its parameters

        """
        ds_dp = self._B_parameterisation.get_ds_dp()
        n = len(ds_dp)
        s = np.array([ds_dp[i] for i in range(n)],
                     dtype=np.float64).reshape(n, 3, 3)
        return s

    @property
    def dM_dp(self) -> np.array:
        """
        Get the first derivatives of M w.r.t its parameters

        """
        return self._M_parameterisation.first_derivatives()

    @property
    def dL_dp(self) -> flex.double:
        """
        Get the first derivatives of L w.r.t its parameters

        """
        if self._L_parameterisation is not None:
            return self._L_parameterisation.first_derivatives()
        return flex.double()

    @property
    def active_parameters(self) -> np.array:
        """
        The active parameters in order: U, B, M, L, W
        """
        active_params = []
        if not self.is_orientation_fixed:
            active_params.append(self.U_params)
        if not self.is_unit_cell_fixed:
            active_params.append(self.B_params)
        if not self.is_mosaic_spread_fixed:
            active_params.append(self.M_params)
        if not self.is_wavelength_spread_fixed:
            active_params.append(self.L_params)
        active_params = np.concatenate(active_params)
        assert len(active_params) > 0
        return active_params

    @active_parameters.setter
    def active_parameters(self, params) -> None:
        """
        Set the active parameters in order: U, B, M, L, W
        """
        if not self.is_orientation_fixed:
            n_U_params = len(self.U_params)
            temp = params[:n_U_params]
            params = params[n_U_params:]
            self.U_params = temp
        if not self.is_unit_cell_fixed:
            n_B_params = len(self.B_params)
            temp = params[:n_B_params]
            params = params[n_B_params:]
            self.B_params = temp
        if not self.is_mosaic_spread_fixed:
            n_M_params = self.M_params.size
            temp = params[:n_M_params]
            params = params[n_M_params:]
            self.M_params = np.array(temp)
        if not self.is_wavelength_spread_fixed:
            n_L_params = self.L_params.size
            temp = params[:n_L_params]
            self.L_params = temp

    @property
    def parameter_labels(self) -> List[str]:
        """
        Get the parameter labels

        """
        labels = []
        if not self.is_orientation_fixed:
            labels += [f"Crystal_U_{i}" for i in range(self.U_params.size)]
        if not self.is_unit_cell_fixed:
            labels += [f"Crystal_B_{i}" for i in range(self.B_params.size)]
        if not self.is_mosaic_spread_fixed:
            labels += [f"Mosaicity_{i}" for i in range(self.M_params.size)]
        if not self.is_wavelength_spread_fixed:
            labels.append("Wavelength_Spread")
        assert len(labels) > 0
        return labels
示例#33
0
def test():
    import random
    import textwrap

    from cctbx.uctbx import unit_cell
    from libtbx.test_utils import approx_equal

    def random_direction_close_to(vector):
        return vector.rotate_around_origin(
            matrix.col((random.random(), random.random(),
                        random.random())).normalize(),
            random.gauss(0, 1.0),
            deg=True,
        )

    # make a random P1 crystal and parameterise it
    a = random.uniform(10, 50) * random_direction_close_to(
        matrix.col((1, 0, 0)))
    b = random.uniform(10, 50) * random_direction_close_to(
        matrix.col((0, 1, 0)))
    c = random.uniform(10, 50) * random_direction_close_to(
        matrix.col((0, 0, 1)))
    xl = Crystal(a, b, c, space_group_symbol="P 1")

    xl_op = CrystalOrientationParameterisation(xl)
    xl_ucp = CrystalUnitCellParameterisation(xl)

    null_mat = matrix.sqr((0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0))

    # compare analytical and finite difference derivatives
    an_ds_dp = xl_op.get_ds_dp()
    fd_ds_dp = get_fd_gradients(xl_op, [1.0e-6 * pi / 180] * 3)
    for e, f in zip(an_ds_dp, fd_ds_dp):
        assert approx_equal((e - f), null_mat, eps=1.0e-6)

    an_ds_dp = xl_ucp.get_ds_dp()
    fd_ds_dp = get_fd_gradients(xl_ucp, [1.0e-7] * xl_ucp.num_free())
    for e, f in zip(an_ds_dp, fd_ds_dp):
        assert approx_equal((e - f), null_mat, eps=1.0e-6)

    # random initial orientations with a random parameter shift at each
    attempts = 100
    for i in range(attempts):

        # make a random P1 crystal and parameterise it
        a = random.uniform(10, 50) * random_direction_close_to(
            matrix.col((1, 0, 0)))
        b = random.uniform(10, 50) * random_direction_close_to(
            matrix.col((0, 1, 0)))
        c = random.uniform(10, 50) * random_direction_close_to(
            matrix.col((0, 0, 1)))
        xl = Crystal(a, b, c, space_group_symbol="P 1")
        xl_op = CrystalOrientationParameterisation(xl)
        xl_uc = CrystalUnitCellParameterisation(xl)

        # apply a random parameter shift to the orientation
        p_vals = xl_op.get_param_vals()
        p_vals = random_param_shift(
            p_vals, [1000 * pi / 9, 1000 * pi / 9, 1000 * pi / 9])
        xl_op.set_param_vals(p_vals)

        # compare analytical and finite difference derivatives
        xl_op_an_ds_dp = xl_op.get_ds_dp()
        xl_op_fd_ds_dp = get_fd_gradients(xl_op, [1.0e-5 * pi / 180] * 3)

        # apply a random parameter shift to the unit cell. We have to
        # do this in a way that is respectful to metrical constraints,
        # so don't modify the parameters directly; modify the cell
        # constants and extract the new parameters
        cell_params = xl.get_unit_cell().parameters()
        cell_params = random_param_shift(cell_params, [1.0] * 6)
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = S.forward_independent_parameters()
        xl_uc.set_param_vals(X)

        xl_uc_an_ds_dp = xl_ucp.get_ds_dp()

        # now doing finite differences about each parameter in turn
        xl_uc_fd_ds_dp = get_fd_gradients(xl_ucp, [1.0e-7] * xl_ucp.num_free())

        for j in range(3):
            assert approx_equal((xl_op_fd_ds_dp[j] - xl_op_an_ds_dp[j]),
                                null_mat,
                                eps=1.0e-6), textwrap.dedent("""\
        Failure in try {i}
        failure for parameter number {j}
        of the orientation parameterisation
        with fd_ds_dp =
        {fd}
        and an_ds_dp =
        {an}
        so that difference fd_ds_dp - an_ds_dp =
        {diff}
        """).format(
                                    i=i,
                                    j=j,
                                    fd=xl_op_fd_ds_dp[j],
                                    an=xl_op_an_ds_dp[j],
                                    diff=xl_op_fd_ds_dp[j] - xl_op_an_ds_dp[j],
                                )

        for j in range(xl_ucp.num_free()):
            assert approx_equal((xl_uc_fd_ds_dp[j] - xl_uc_an_ds_dp[j]),
                                null_mat,
                                eps=1.0e-6), textwrap.dedent("""\
        Failure in try {i}
        failure for parameter number {j}
        of the unit cell parameterisation
        with fd_ds_dp =
        {fd}
        and an_ds_dp =
        {an}
        so that difference fd_ds_dp - an_ds_dp =
        {diff}
        """).format(
                                    i=i,
                                    j=j,
                                    fd=xl_uc_fd_ds_dp[j],
                                    an=xl_uc_an_ds_dp[j],
                                    diff=xl_uc_fd_ds_dp[j] - xl_uc_an_ds_dp[j],
                                )
            'davec_dp': fd_vec[0],
            'dbvec_dp': fd_vec[1],
            'dcvec_dp': fd_vec[2],
            'dB_dp': fd_B,
            'dO_dp': fd_O
        })

        p_vals[i] = val

    # return to the initial state
    mp.set_param_vals(p_vals)

    return fd_grad


xlo_param = CrystalOrientationParameterisation(crystal)
xluc_param = CrystalUnitCellParameterisation(crystal)

from dials.algorithms.refinement.restraints.restraints import SingleUnitCellTie
uct = SingleUnitCellTie(xluc_param, [None] * 6, [None] * 6)

from scitbx.math import angle_derivative_wrt_vectors

B = matrix.sqr(crystal.get_B())
O = (B.transpose()).inverse()
a, b, c, aa, bb, cc = crystal.get_unit_cell().parameters()
aa *= DEG2RAD
bb *= DEG2RAD
cc *= DEG2RAD
Ut = matrix.sqr(crystal.get_U()).transpose()
avec, bvec, cvec = [Ut * vec for vec in crystal.get_real_space_vectors()]
示例#35
0
assert approx_equal(im_width, 1.5 * pi / 180.)

# Build experiment lists
stills_experiments = ExperimentList()
stills_experiments.append(Experiment(
      beam=mybeam, detector=mydetector, crystal=crystal, imageset=None))
scans_experiments = ExperimentList()
scans_experiments.append(Experiment(
      beam=mybeam, detector=mydetector, crystal=crystal, goniometer = mygonio,
      scan=myscan, imageset=None))

##########################################################
# Parameterise the models (only for perturbing geometry) #
##########################################################

xlo_param = CrystalOrientationParameterisation(crystal)
xluc_param = CrystalUnitCellParameterisation(crystal)

################################
# Apply known parameter shifts #
################################

# rotate crystal (=5 mrad each rotation)
xlo_p_vals = []
p_vals = xlo_param.get_param_vals()
xlo_p_vals.append(p_vals)
new_p_vals = [a + b for a, b in zip(p_vals, [5., 5., 5.])]
xlo_param.set_param_vals(new_p_vals)

# change unit cell (=1.0 Angstrom length upsets, 0.5 degree of
# gamma angle)