def sequence_to_stills(experiments, reflections, params): assert len(reflections) == 1 reflections = reflections[0] new_experiments = ExperimentList() new_reflections = flex.reflection_table() # This is the subset needed to integrate for key in [ "id", "imageset_id", "shoebox", "bbox", "intensity.sum.value", "intensity.sum.variance", "entering", "flags", "miller_index", "panel", "xyzobs.px.value", "xyzobs.px.variance", ]: if key in reflections: new_reflections[key] = type(reflections[key])() elif key == "imageset_id": assert len(experiments.imagesets()) == 1 reflections["imageset_id"] = flex.int(len(reflections), 0) new_reflections["imageset_id"] = flex.int() elif key == "entering": reflections["entering"] = flex.bool(len(reflections), False) new_reflections["entering"] = flex.bool() else: raise RuntimeError( "Expected key not found in reflection table: %s" % key) for expt_id, experiment in enumerate(experiments): # Get the goniometr setting matrix goniometer_setting_matrix = matrix.sqr( experiment.goniometer.get_setting_rotation()) goniometer_axis = matrix.col(experiment.goniometer.get_rotation_axis()) step = experiment.scan.get_oscillation()[1] refls = reflections.select(reflections["id"] == expt_id) _, _, _, _, z1, z2 = refls["bbox"].parts() # Create an experiment for each scanpoint for i_scan_point in range(*experiment.scan.get_array_range()): if params.max_scan_points and i_scan_point >= params.max_scan_points: break # The A matrix is the goniometer setting matrix for this scan point # times the scan varying A matrix at this scan point. Note, the # goniometer setting matrix for scan point zero will be the identity # matrix and represents the beginning of the oscillation. # For stills, the A matrix needs to be positioned in the midpoint of an # oscillation step. Hence, here the goniometer setting matrixis rotated # by a further half oscillation step. A = (goniometer_axis.axis_and_angle_as_r3_rotation_matrix( angle=experiment.scan.get_angle_from_array_index(i_scan_point) + (step / 2), deg=True, ) * goniometer_setting_matrix * matrix.sqr( experiment.crystal.get_A_at_scan_point(i_scan_point))) crystal = MosaicCrystalSauter2014(experiment.crystal) crystal.set_A(A) # Copy in mosaic parameters if available if params.output.domain_size_ang is None and hasattr( experiment.crystal, "get_domain_size_ang"): crystal.set_domain_size_ang( experiment.crystal.get_domain_size_ang()) elif params.output.domain_size_ang is not None: crystal.set_domain_size_ang(params.output.domain_size_ang) if params.output.half_mosaicity_deg is None and hasattr( experiment.crystal, "get_half_mosaicity_deg"): crystal.set_half_mosaicity_deg( experiment.crystal.get_half_mosaicity_deg()) elif params.output.half_mosaicity_deg is not None: crystal.set_half_mosaicity_deg( params.output.half_mosaicity_deg) new_experiment = Experiment( detector=experiment.detector, beam=experiment.beam, crystal=crystal, imageset=experiment.imageset.as_imageset() [i_scan_point:i_scan_point + 1], ) new_experiments.append(new_experiment) # Each reflection in a 3D shoebox can be found on multiple images. # Slice the reflections such that any reflection on this scan point # is included with this image new_id = len(new_experiments) - 1 subrefls = refls.select((i_scan_point >= z1) & (i_scan_point < z2)) for refl in subrefls.rows(): assert i_scan_point in range(*refl["bbox"][4:6]) new_sb = Shoebox() start = i_scan_point - refl["bbox"][4] # z1 new_sb.data = refl["shoebox"].data[start:start + 1, :, :] new_sb.background = refl["shoebox"].background[start:start + 1, :, :] new_sb.mask = refl["shoebox"].mask[start:start + 1, :, :] intensity = new_sb.summed_intensity() new_sb.bbox = tuple( list(refl["bbox"])[0:4] + [0, 1]) # keep the original shoebox but reset the z values new_sb.panel = refl["panel"] new_refl = {} new_refl["id"] = new_refl["imageset_id"] = new_id new_refl["shoebox"] = new_sb new_refl["bbox"] = new_sb.bbox new_refl["intensity.sum.value"] = intensity.observed.value new_refl[ "intensity.sum.variance"] = intensity.observed.variance for key in ["entering", "flags", "miller_index", "panel"]: new_refl[key] = refl[key] centroid = new_sb.centroid_foreground_minus_background() new_refl["xyzobs.px.value"] = centroid.px.position new_refl["xyzobs.px.variance"] = centroid.px.variance new_reflections.append({}) for key in new_refl: new_reflections[key][-1] = new_refl[key] # Re-predict using the reflection slices and the stills predictors ref_predictor = ExperimentsPredictorFactory.from_experiments( new_experiments, force_stills=new_experiments.all_stills()) new_reflections = ref_predictor(new_reflections) return (new_experiments, new_reflections)
def tilt_fit(imgs, is_bg_pix, delta_q, photon_gain, sigma_rdout, zinger_zscore, exper, predicted_refls, sb_pad=0, filter_boundary_spots=False, minsnr=None, mintilt=None, plot=False, verbose=False, is_BAD_pix=None, min_strong=None, min_bg=10, min_dist_to_bad_pix=7, **kwargs): if is_BAD_pix is None: is_BAD_pix = np.zeros(np.array(is_bg_pix).shape, np.bool) predicted_refls['id'] = flex.int(len(predicted_refls), -1) predicted_refls['imageset_id'] = flex.int(len(predicted_refls), 0) El = ExperimentList() El.append(exper) predicted_refls.centroid_px_to_mm(El) predicted_refls.map_centroids_to_reciprocal_space(El) ss_dim, fs_dim = imgs[0].shape n_refl = len(predicted_refls) integrations = [] variances = [] coeffs = [] new_shoeboxes = [] tilt_error = [] boundary = [] detdist = exper.detector[0].get_distance() pixsize = exper.detector[0].get_pixel_size()[0] ave_wave = exper.beam.get_wavelength() bad_trees = {} unique_panels = set(predicted_refls["panel"]) for p in unique_panels: panel_bad_pix = is_BAD_pix[p] ybad, xbad = np.where(is_BAD_pix[0]) if ybad.size: bad_pts = zip(ybad, xbad) bad_trees[p] = cKDTree(bad_pts) else: bad_trees[p] = None sel = [] for i_ref in range(len(predicted_refls)): ref = predicted_refls[i_ref] i_com, j_com, _ = ref['xyzobs.px.value'] # which detector panel am I on ? i_panel = ref['panel'] if bad_trees[i_panel] is not None: if bad_trees[i_panel].query_ball_point((i_com, j_com), r=min_dist_to_bad_pix): sel.append(False) integrations.append(None) variances.append(None) coeffs.append(None) new_shoeboxes.append(None) tilt_error.append(None) boundary.append(None) continue i1_a, i2_a, j1_a, j2_a, _, _ = ref['bbox'] # bbox of prediction i1_ = max(i1_a, 0) i2_ = min(i2_a, fs_dim-1) j1_ = max(j1_a, 0) j2_ = min(j2_a, ss_dim-1) # get the number of pixels spanning the box in pixels Qmag = 2*np.pi*np.linalg.norm(ref['rlp']) # magnitude momentum transfer of the RLP in physicist convention rad1 = (detdist/pixsize) * np.tan(2*np.arcsin((Qmag-delta_q*.5)*ave_wave/4/np.pi)) rad2 = (detdist/pixsize) * np.tan(2*np.arcsin((Qmag+delta_q*.5)*ave_wave/4/np.pi)) bbox_extent = (rad2-rad1) / np.sqrt(2) # rad2 - rad1 is the diagonal across the bbox i_com = i_com - 0.5 j_com = j_com - 0.5 i_low = int(i_com - bbox_extent/2.) i_high = int(i_com + bbox_extent/2.) j_low = int(j_com - bbox_extent/2.) j_high = int(j_com + bbox_extent/2.) i1_orig = max(i_low, 0) i2_orig = min(i_high, fs_dim-1) j1_orig = max(j_low, 0) j2_orig = min(j_high, ss_dim-1) i_low = i_low - sb_pad i_high = i_high + sb_pad j_low = j_low - sb_pad j_high = j_high + sb_pad i1 = max(i_low, 0) i2 = min(i_high, fs_dim-1) j1 = max(j_low, 0) j2 = min(j_high, ss_dim-1) i1_p = i1_orig - i1 i2_p = i1_p + i2_orig-i1_orig j1_p = j1_orig - j1 j2_p = j1_p + j2_orig-j1_orig if i1 == 0 or i2 == fs_dim or j1 == 0 or j2 == ss_dim: boundary.append(True) if filter_boundary_spots: sel.append(False) integrations.append(None) variances.append(None) coeffs.append(None) new_shoeboxes.append(None) tilt_error.append(None) continue else: boundary.append(False) # get the iamge and mask shoebox_img = imgs[i_panel][j1:j2, i1:i2] / photon_gain # NOTE: gain is imortant here! dials_mask = np.zeros(shoebox_img.shape).astype(np.int32) # initially all pixels are valid dials_mask += MaskCode.Valid shoebox_mask = is_bg_pix[i_panel][j1:j2, i1:i2] badpix_mask = is_BAD_pix[i_panel][j1:j2, i1:i2] dials_mask[shoebox_mask] = dials_mask[shoebox_mask] + MaskCode.Background new_shoebox = Shoebox((i1_orig, i2_orig, j1_orig, j2_orig, 0, 1)) new_shoebox.allocate() new_shoebox.data = flex.float(np.ascontiguousarray(shoebox_img[None, j1_p:j2_p, i1_p: i2_p])) #new_shoebox.data = flex.float(shoebox_img[None,]) # get coordinates arrays of the image Y, X = np.indices(shoebox_img.shape) # determine if any more outliers are present in background pixels img1d = shoebox_img.ravel() mask1d = shoebox_mask.ravel() # mask specifies which pixels are bg # out1d specifies which bg pixels are outliers (zingers) out1d = np.zeros(mask1d.shape, bool) out1d[mask1d] = is_outlier(img1d[mask1d].ravel(), zinger_zscore) out2d = out1d.reshape(shoebox_img.shape) # combine bad2d with badpix mask out2d = np.logical_or(out2d, badpix_mask) # these are points we fit to: both zingers and original mask fit_sel = np.logical_and(~out2d, shoebox_mask) # fit plane to these points, no outliers, no masked if np.sum(fit_sel) < min_bg: integrations.append(None) variances.append(None) coeffs.append(None) new_shoeboxes.append(None) tilt_error.append(None) sel.append(False) continue # update the dials mask... dials_mask[fit_sel] = dials_mask[fit_sel] + MaskCode.BackgroundUsed # fast scan pixels, slow scan pixels, pixel values (corrected for gain) fast, slow, rho_bg = X[fit_sel], Y[fit_sel], shoebox_img[fit_sel] # do the fit of the background plane A = np.array([fast, slow, np.ones_like(fast)]).T # weights matrix: W = np.diag(1 / (sigma_rdout ** 2 + rho_bg)) AWA = np.dot(A.T, np.dot(W, A)) try: AWA_inv = np.linalg.inv(AWA) except np.linalg.LinAlgError: print ("WARNING: Fit did not work.. investigate reflection") print (ref) integrations.append(None) variances.append(None) coeffs.append(None) new_shoeboxes.append(None) tilt_error.append(None) sel.append(False) continue AtW = np.dot(A.T, W) a, b, c = np.dot(np.dot(AWA_inv, AtW), rho_bg) coeffs.append((a, b, c)) # fit of the tilt plane background X1d = np.ravel(X) Y1d = np.ravel(Y) background = (X1d * a + Y1d * b + c).reshape(shoebox_img.shape) new_shoebox.background = flex.float(np.ascontiguousarray(background[None, j1_p: j2_p, i1_p:i2_p])) # vector of residuals r = rho_bg - np.dot(A, (a, b, c)) Nbg = len(rho_bg) Nparam = 3 r_fact = np.dot(r.T, np.dot(W, r)) / (Nbg - Nparam) var_covar = AWA_inv * r_fact abc_var = var_covar[0][0], var_covar[1][1], var_covar[2][2] # place the strong spot mask in the expanded shoebox peak_mask = ref['shoebox'].mask.as_numpy_array()[0] == MaskCode.Valid + MaskCode.Foreground peak_mask_valid = peak_mask[j1_-j1_a:- j1_a + j2_, i1_-i1_a:-i1_a + i2_] peak_mask_expanded = np.zeros_like(shoebox_mask) # overlap region i1_o = max(i1_, i1) i2_o = min(i2_, i2) j1_o = max(j1_, j1) j2_o = min(j2_, j2) pk_mask_istart = i1_o - i1_ pk_mask_jstart = j1_o - j1_ pk_mask_istop = peak_mask_valid.shape[1] - (i2_ - i2_o) pk_mask_jstop = peak_mask_valid.shape[0] - (j2_ - j2_o) peak_mask_overlap = peak_mask_valid[pk_mask_jstart: pk_mask_jstop, pk_mask_istart: pk_mask_istop] pk_mask_exp_i1 = i1_o - i1 pk_mask_exp_j1 = j1_o - j1 pk_mask_exp_i2 = peak_mask_expanded.shape[1] - (i2 - i2_o) pk_mask_exp_j2 = peak_mask_expanded.shape[0] - (j2 - j2_o) peak_mask_expanded[pk_mask_exp_j1: pk_mask_exp_j2, pk_mask_exp_i1: pk_mask_exp_i2] = peak_mask_overlap # update the dials mask dials_mask[peak_mask_expanded] = dials_mask[peak_mask_expanded] + MaskCode.Foreground p = X[peak_mask_expanded] # fast scan coords q = Y[peak_mask_expanded] # slow scan coords rho_peak = shoebox_img[peak_mask_expanded] # pixel values Isum = np.sum(rho_peak - a*p - b*q - c) # summed spot intensity var_rho_peak = sigma_rdout ** 2 + rho_peak # include readout noise in the variance Ns = len(rho_peak) # number of integrated peak pixels # variance propagated from tilt plane constants var_a_term = abc_var[0] * ((np.sum(p))**2) var_b_term = abc_var[1] * ((np.sum(q))**2) var_c_term = abc_var[2] * (Ns**2) tilt_error.append(var_a_term + var_b_term + var_c_term) # total variance of the spot var_Isum = np.sum(var_rho_peak) + var_a_term + var_b_term + var_c_term integrations.append(Isum) variances.append(var_Isum) new_shoebox.mask = flex.int(np.ascontiguousarray(dials_mask[None, j1_p:j2_p, i1_p:i2_p])) new_shoeboxes.append(new_shoebox) sel.append(True) if i_ref % 50 == 0 and verbose: print("Integrated refls %d / %d" % (i_ref+1, n_refl)) #if filter_boundary_spots: # sel = flex.bool([I is not None for I in integrations]) boundary = np.array(boundary)[sel].astype(bool) integrations = np.array([I for I in integrations if I is not None]) variances = np.array([v for v in variances if v is not None]) coeffs = np.array([c for c in coeffs if c is not None]) tilt_error = np.array([te for te in tilt_error if te is not None]) #boundary = np.zeros(tilt_error.shape).astype(np.bool) predicted_refls = predicted_refls.select(flex.bool(sel)) predicted_refls['resolution'] = flex.double( 1/ np.linalg.norm(predicted_refls['rlp'], axis=1)) predicted_refls['boundary'] = flex.bool(boundary) predicted_refls["intensity.sum.value.Leslie99"] = flex.double(integrations) predicted_refls["intensity.sum.variance.Leslie99"] = flex.double(variances) predicted_refls['shoebox'] = flex.shoebox([sb for sb in new_shoeboxes if sb is not None]) idx_assign = assign_indices.AssignIndicesGlobal(tolerance=0.333) idx_assign(predicted_refls, El) return predicted_refls, coeffs, tilt_error, integrations, variances