示例#1
0
 def __init__(self, variables, clauses, verbose=True):
     self.verbose = verbose
     self.variables = variables
     self.clauses = ClauseSet(variables, clauses)
     self.assignment = Assignment(variables)
     self.queue = self.variables[:]
     self.counts = [dict(), dict()]
示例#2
0
 def gather(self, verbose=True):
     os.system("rm -f " + BulkGatherer.BUFFER_FILE)
     for i, part in tqdm.tqdm(list(enumerate(os.scandir(self.folder))),
                              disable=not verbose):
         if i == 0:
             os.system("head -n 1 {path} >> {out}".format(
                 path=os.path.join(part.path, Inputs.ASSIGNMENT_PATH),
                 out=BulkGatherer.BUFFER_FILE))
         os.system("tail -n +2 {path} >> {out}".format(
             path=os.path.join(part.path, Inputs.ASSIGNMENT_PATH),
             out=BulkGatherer.BUFFER_FILE))
     assignment = Assignment([])
     assignment.load(BulkGatherer.BUFFER_FILE)
     os.system("rm -f " + BulkGatherer.BUFFER_FILE)
     return assignment
示例#3
0
文件: ilp.py 项目: ychalier/dice
 def solve(self, variables_path=None, constraints_path=None):
     open(self.gurobi_log_file, "w").close()
     self.model.params.Threads = 12
     self.model.optimize()
     self.assignment = Assignment(self.variables)
     f_vars, f_cstr = None, None
     if constraints_path is not None:
         f_cstr = open(constraints_path, "w")
         f_cstr.write("\t".join(Ilp.cstr_attrs) + "\n")
     if f_cstr is not None:
         for constraint in self.model.getConstrs():
             for attr in Ilp.cstr_attrs:
                 value = ""
                 try:
                     value = constraint.getAttr(attr)
                 except:
                     pass
                 f_cstr.write(str(value) + "\t")
             f_cstr.write("\n")
         f_cstr.close()
     if variables_path is not None:
         f_vars = open(variables_path, "w")
         f_vars.write("\t".join(Ilp.vars_attrs) + "\n")
     inner_confidence = []
     for gurobi_var in self.model.getVars():
         if gurobi_var.varName[0] not in "PTRS":
             continue
         if gurobi_var.rc == 0:
             up = min(2, gurobi_var.SAObjUp)
             low = max(-2, gurobi_var.SAObjLow)
             inner_confidence.append((gurobi_var.x - .51) * (up - low))
         if len(inner_confidence) == 0:
             a, b = 0, 1
         else:
             a, b = min(inner_confidence), max(inner_confidence)
     for gurobi_var in self.model.getVars():
         if f_vars is not None:
             for attr in Ilp.vars_attrs:
                 value = ""
                 try:
                     value = gurobi_var.getAttr(attr)
                 except:
                     pass
                 f_vars.write(str(value) + "\t")
             f_vars.write("\n")
         letter = gurobi_var.varName[0]
         if letter not in "PTRS":
             continue
         index = int(gurobi_var.varName[2:-1])
         confidence = 0
         if gurobi_var.rc != 0:
             confidence = gurobi_var.rc
         else:
             confidence = gurobi_var.x + gurobi_var.obj + Parameters.EVIDENCE_OFFSET
         self.assignment.assign(
             Variable(index, Dimensions.from_letter(letter)),
             gurobi_var.x >= .5,
             confidence,
         )
     if f_vars is not None:
         f_vars.close()
     return self.assignment
示例#4
0
文件: ilp.py 项目: ychalier/dice
class Ilp:
    """
    Attributes and their signification @
    http://www.gurobi.com/documentation/8.1/refman/attributes.html#sec:Attributes
    """

    gurobi_log_file = "gurobi.log"
    vars_attrs = [
        "VarName",
        "VType",
        "LB",
        "UB",
        "Obj",
        "X",
        "Xn",
        "RC",
        "BarX",
        "Start",
        "VarHintVal",
        "VarHintPri",
        "BranchPriority",
        "Partition",
        "VBasis",
        "PStart",
        "IISLB",
        "IISUB",
        "PWLObjCvx",
        "SAObjLow",
        "SAObjUp",
        "SALBLow",
        "SALBUp",
        "SAUBLow",
        "SAUBUp",
        "UnbdRay",
    ]
    cstr_attrs = [
        "ConstrName",
        "Sense",
        "RHS",
        "Pi",
        "Slack",
        "CBasis",
        "DStart",
        "Lazy",
        "IISConstr",
        "SARHSLow",
        "SARHSUp",
        "FarkasDual",
    ]

    def __init__(self, variables, model, verbose=True):
        self.variables = variables
        self.model = model
        self.verbose = verbose
        self.assignment = None

    def solve(self, variables_path=None, constraints_path=None):
        open(self.gurobi_log_file, "w").close()
        self.model.params.Threads = 12
        self.model.optimize()
        self.assignment = Assignment(self.variables)
        f_vars, f_cstr = None, None
        if constraints_path is not None:
            f_cstr = open(constraints_path, "w")
            f_cstr.write("\t".join(Ilp.cstr_attrs) + "\n")
        if f_cstr is not None:
            for constraint in self.model.getConstrs():
                for attr in Ilp.cstr_attrs:
                    value = ""
                    try:
                        value = constraint.getAttr(attr)
                    except:
                        pass
                    f_cstr.write(str(value) + "\t")
                f_cstr.write("\n")
            f_cstr.close()
        if variables_path is not None:
            f_vars = open(variables_path, "w")
            f_vars.write("\t".join(Ilp.vars_attrs) + "\n")
        inner_confidence = []
        for gurobi_var in self.model.getVars():
            if gurobi_var.varName[0] not in "PTRS":
                continue
            if gurobi_var.rc == 0:
                up = min(2, gurobi_var.SAObjUp)
                low = max(-2, gurobi_var.SAObjLow)
                inner_confidence.append((gurobi_var.x - .51) * (up - low))
            if len(inner_confidence) == 0:
                a, b = 0, 1
            else:
                a, b = min(inner_confidence), max(inner_confidence)
        for gurobi_var in self.model.getVars():
            if f_vars is not None:
                for attr in Ilp.vars_attrs:
                    value = ""
                    try:
                        value = gurobi_var.getAttr(attr)
                    except:
                        pass
                    f_vars.write(str(value) + "\t")
                f_vars.write("\n")
            letter = gurobi_var.varName[0]
            if letter not in "PTRS":
                continue
            index = int(gurobi_var.varName[2:-1])
            confidence = 0
            if gurobi_var.rc != 0:
                confidence = gurobi_var.rc
            else:
                confidence = gurobi_var.x + gurobi_var.obj + Parameters.EVIDENCE_OFFSET
            self.assignment.assign(
                Variable(index, Dimensions.from_letter(letter)),
                gurobi_var.x >= .5,
                confidence,
            )
        if f_vars is not None:
            f_vars.close()
        return self.assignment

    def report(self):
        with open(self.gurobi_log_file) as file:
            text = file.read()
        report = Report()
        report.add(text)
        return report
示例#5
0
class MaxSat:
    def __init__(self, variables, clauses, verbose=True):
        self.verbose = verbose
        self.variables = variables
        self.clauses = ClauseSet(variables, clauses)
        self.assignment = Assignment(variables)
        self.queue = self.variables[:]
        self.counts = [dict(), dict()]

    def update_counts(self, mask=None):
        clauses = self.clauses.get_units()
        if mask is not None:
            clauses = clauses.intersection(mask)
        for x in self.assignment.get_unassigned():
            self.counts[1][x] = 0.
            self.counts[0][x] = 0.
            for c in clauses:
                if x in c.positives:
                    self.counts[1][x] += c.get_weight()
                if x in c.negatives:
                    self.counts[0][x] += c.get_weight()

    def update_queue(self):
        self.queue.sort(
            key=lambda x: abs(self.counts[1][x] - self.counts[0][x]))

    def find_safe_var(self):
        for x in self.assignment.get_unassigned():
            for truth_value in [True, False]:
                if truth_value:
                    units = self.clauses.get_pos_units(x)
                    unsatisfieds = self.clauses.get_neg_unsatisfieds(x)
                else:
                    units = self.clauses.get_neg_units(x)
                    unsatisfieds = self.clauses.get_pos_unsatisfieds(x)
                confidence = sum([c.get_weight() for c in units]) - sum(
                    [c.get_weight() for c in unsatisfieds])
                if confidence >= 0:
                    return x, truth_value, {
                        True: 1.,
                        False: -1.
                    }[truth_value] * confidence
        return None, None, None

    def solve(self):
        self.update_counts()
        self.update_queue()
        if self.verbose:
            bar = ProgressBar(len(self.queue))
            print("Starting reasoning...")
            bar.start()
        while len(self.queue) > 0:
            x = self.queue.pop()
            if self.verbose:
                bar.increment()
            self.assignment.assign(x, self.counts[1][x] > self.counts[0][x],
                                   self.counts[1][x] - self.counts[0][x])
            self.clauses.update(x, self.counts[1][x] > self.counts[0][x])
            while True:
                safe_var, truth_value, confidence = self.find_safe_var()
                if safe_var is None:
                    break
                self.assignment.assign(safe_var, truth_value, confidence)
                self.clauses.update(safe_var, truth_value)
                self.queue.remove(safe_var)
                if self.verbose:
                    bar.increment()
            self.update_counts(self.clauses.get_occurences(x))
            self.update_queue()
        if self.verbose:
            bar.stop()
        return self.assignment

    def report(self):
        report = Report()
        unsatisfieds = self.clauses.get_unsatisfieds()
        n_clauses = len(self.clauses)
        n_satisfieds = n_clauses - len(unsatisfieds)
        w_total = sum([c.get_weight() for c in self.clauses])
        w_satisfieds = w_total - sum([c.get_weight() for c in unsatisfieds])
        report.add_value_ratio("Satisfied weight", w_satisfieds, w_total)
        report.add_value_ratio("Satisfied clauses", n_satisfieds, n_clauses)
        return report
示例#6
0
文件: inputs.py 项目: ychalier/dice
 def load_assignment(self):
     if os.path.isfile(self.path(self.ASSIGNMENT_PATH)):
         from dice.reason import Assignment
         self._assignment = Assignment([])
         self._assignment.load(self.path(self.ASSIGNMENT_PATH))
示例#7
0
文件: inputs.py 项目: ychalier/dice
class Inputs(Output):

    KB_PATH = "kb.tsv"
    TAXONOMY_PATH = "taxonomy.zip"
    EMBEDDING_PATH = "embedding"
    SIMILARITY_MATRIX_PATH = "similarity"
    PROBABILITY_PATH = "probability"
    TRANSITION_PATH = "transition.npy"
    ENTAILER_PATH = "entailer.tsv"
    DETECTIVE_PATH = "detective.tsv"
    ASSIGNMENT_PATH = "assignment.tsv"

    def __init__(self, folder, load=False):
        Output.__init__(self, folder)
        self._kb = None
        self._taxonomy = None
        self._embedding = None
        self._similarity_matrix = None
        self._probability = None
        self._transition = None
        self._entailer = None
        self._detective = None
        self._assignment = None
        if load:
            self.load()

    def clone(self, clone_folder):
        inputs = Inputs(clone_folder)
        if self._kb is not None:
            inputs.set_kb(self._kb)
        if self._taxonomy is not None:
            inputs.set_taxonomy(self._taxonomy)
        if self._embedding is not None:
            inputs.set_embedding(self._embedding)
        if self._similarity_matrix is not None:
            inputs.set_similarity_matrix(self._similarity_matrix)
        if self._probability is not None:
            inputs.set_probability(self._probability)
        if self._transition is not None:
            inputs.set_transition(self._transition)
        if self._entailer is not None:
            inputs.set_entailer(self._entailer)
        if self._detective is not None:
            inputs.set_detective(self._detective)
        if self._assignment is not None:
            inputs.set_assignment(self._assignment)
        return inputs

    def merge_kb(self, index_offset, other):
        if self._kb is not None:
            if other._kb is not None:
                for fact in other._kb.values():
                    fact.index += index_offset
                    self._kb[fact.index] = fact
        else:
            self._kb = other._kb

    def merge_taxonomy(self, index_offset, other):
        if self._taxonomy is not None:
            if other._taxonomy is not None:
                for index, key in other._taxonomy.relation._map.items():
                    self._taxonomy.relation.map(index + index_offset, key)
                for u in other._taxonomy.nodes():
                    if self._taxonomy.has_node(u):
                        self._taxonomy.nodes[u].setdefault("weight", 0)
                        self._taxonomy.nodes[u][
                            "weight"] += other._taxonomy.nodes[u].get(
                                "weight", 0)
                    else:
                        self._taxonomy.add_node(
                            u,
                            weight=other._taxonomy.nodes[u].get("weight", 0))
                for u, v in other._taxonomy.edges():
                    if self._taxonomy.has_edge(u, v):
                        pass
                    else:
                        self._taxonomy.add_edge(
                            u,
                            v,
                            weight=other._taxonomy.get_edge_data(u, v).get(
                                "weight", 0))
        else:
            self._taxonomy = other._taxonomy

    def merge_embedding(self, index_offset, other):
        if self._embedding is not None:
            if other._embedding is not None:
                import numpy as np
                shape = self._embedding._matrix.shape[0]
                for key, index in other._embedding._map.items():
                    self._embedding.add_to_map(key + index_offset,
                                               index + shape)
                self._embedding._matrix = np.vstack(
                    (self._embedding._matrix, other._embedding._matrix))
        else:
            self._embedding = other._embedding

    def merge_detective(self, index_offset, other):
        if self._detective is not None:
            if other._detective is not None:
                from dice.evidence import EvidenceWrapper
                for cue_cls, cue_dict in other._detective.cues.items():
                    for index, value in cue_dict.items():
                        self._detective.cues[cue_cls][index +
                                                      index_offset] = value
                for index in other._detective.keys():
                    self._detective[index + index_offset] = EvidenceWrapper(
                        index + index_offset, self._detective.cues.values())
        else:
            self._detective = other._detective

    def merge(self, other):
        index_offset = 0
        if self._kb is not None:
            index_offset = max(self._kb.keys()) + 1
        self.merge_kb(index_offset, other)
        self.merge_taxonomy(index_offset, other)
        self.merge_embedding(index_offset, other)
        self.merge_detective(index_offset, other)

    def save(self):
        self.save_kb()
        self.save_taxonomy()
        self.save_embedding()
        self.save_similarity_matrix()
        self.save_probability()
        self.save_transition()
        self.save_entailer()
        self.save_detective()
        self.save_assignment()

    def load(self):
        self.load_kb()
        self.load_taxonomy()
        self.load_embedding()
        self.load_similarity_matrix()
        self.load_probability()
        self.load_transition()
        self.load_entailer()
        self.load_detective()
        self.load_assignment()

    def save_kb(self):
        if self._kb is not None:
            self._kb.export(self.path(self.KB_PATH))

    def save_taxonomy(self):
        if self._taxonomy is not None:
            self._taxonomy.save(self.path(self.TAXONOMY_PATH))

    def save_embedding(self):
        if self._embedding is not None:
            self._embedding.save(self.path(self.EMBEDDING_PATH))

    def save_similarity_matrix(self):
        if self._similarity_matrix is not None:
            self._similarity_matrix.save(self.path(
                self.SIMILARITY_MATRIX_PATH))

    def save_probability(self):
        if self._probability is not None:
            self._probability.save(self.path(self.PROBABILITY_PATH))

    def save_transition(self):
        if self._transition is not None:
            np.save(self.path(self.TRANSITION_PATH), self._transition)

    def save_entailer(self):
        if self._entailer is not None:
            self._entailer.save(self.path(self.ENTAILER_PATH))

    def save_detective(self):
        if self._detective is not None:
            self._detective.save(self.path(self.DETECTIVE_PATH))

    def save_assignment(self):
        if self._assignment is not None:
            self._assignment.save(self.path(self.ASSIGNMENT_PATH))

    def load_kb(self):
        if os.path.isfile(self.path(self.KB_PATH)):
            from dice.kb import KnowledgeBase
            self._kb = KnowledgeBase(self.path(self.KB_PATH))

    def load_taxonomy(self):
        if os.path.isfile(self.path(self.TAXONOMY_PATH)):
            from dice.taxonomy import Taxonomy
            self._taxonomy = Taxonomy()
            self._taxonomy.load(self.path(self.TAXONOMY_PATH))

    def load_embedding(self):
        if os.path.isfile(self.path(self.EMBEDDING_PATH + ".tsv"))\
            and os.path.isfile(self.path(self.EMBEDDING_PATH + ".npy")):
            from dice.similarity import Embedding
            self._embedding = Embedding()
            self._embedding.load(self.path(self.EMBEDDING_PATH))

    def load_similarity_matrix(self):
        if os.path.isfile(self.path(self.SIMILARITY_MATRIX_PATH + "_index.pickle"))\
            and os.path.isfile(self.path(self.SIMILARITY_MATRIX_PATH + "_matrix.npz")):
            from dice.similarity import SimilarityMatrix
            self._similarity_matrix = SimilarityMatrix()
            self._similarity_matrix.load(self.path(
                self.SIMILARITY_MATRIX_PATH))

    def load_probability(self):
        if os.path.isfile(self.path(self.PROBABILITY_PATH + "_sets.pickle"))\
            and os.path.isfile(self.path(self.PROBABILITY_PATH + "_law.npz")):
            from dice.evidence import Probability
            self._probability = Probability()
            self._probability.load(self.path(self.PROBABILITY_PATH))

    def load_transition(self):
        if os.path.isfile(self.path(self.TRANSITION_PATH)):
            self._transition = np.load(self.path(self.TRANSITION_PATH))

    def load_entailer(self):
        if os.path.isfile(self.path(self.ENTAILER_PATH)):
            from dice.evidence import Entailer
            self._entailer = Entailer(self)
            self._entailer.load(self.path(self.ENTAILER_PATH))

    def load_detective(self):
        if os.path.isfile(self.path(self.DETECTIVE_PATH)):
            from dice.evidence import Detective
            self._detective = Detective(self)
            self._detective.load(self.path(self.DETECTIVE_PATH))

    def load_assignment(self):
        if os.path.isfile(self.path(self.ASSIGNMENT_PATH)):
            from dice.reason import Assignment
            self._assignment = Assignment([])
            self._assignment.load(self.path(self.ASSIGNMENT_PATH))

    def get_kb(self):
        if self._kb is None:
            self.load_kb()
        if self._kb is None:
            raise InputsException("KB")
        return self._kb

    def get_taxonomy(self):
        if self._taxonomy is None:
            self.load_taxonomy()
        if self._taxonomy is None:
            raise InputsException("Taxonomy")
        return self._taxonomy

    def get_embedding(self):
        if self._embedding is None:
            self.load_embedding()
        if self._embedding is None:
            raise InputsException("Property embedding")
        return self._embedding

    def get_similarity_matrix(self):
        if self._similarity_matrix is None:
            self.load_similarity_matrix()
        if self._similarity_matrix is None:
            raise InputsException("Similarity matrix")
        return self._similarity_matrix

    def get_probability(self):
        if self._probability is None:
            self.load_probability()
        if self._probability is None:
            raise InputsException("Probability")
        return self._probability

    def get_transition(self):
        if self._transition is None:
            self.load_transition()
        if self._transition is None:
            raise InputsException("Transition")
        return self._transition

    def get_entailer(self):
        if self._entailer is None:
            self.load_entailer()
        if self._entailer is None:
            raise InputsException("Entailer")
        return self._entailer

    def get_detective(self):
        if self._detective is None:
            self.load_detective()
        if self._detective is None:
            raise InputsException("Detective")
        return self._detective

    def get_assignment(self):
        if self._assignment is None:
            self.load_assignment()
        if self._assignment is None:
            raise InputsException("Assignment")
        return self._assignment

    def set_kb(self, kb, save=True):
        self._kb = kb
        if save:
            self.save_kb()

    def set_taxonomy(self, taxonomy, save=True):
        self._taxonomy = taxonomy
        if save:
            self.save_taxonomy()

    def set_embedding(self, embedding, save=True):
        self._embedding = embedding
        if save:
            self.save_embedding()

    def set_similarity_matrix(self, similarity_matrix, save=True):
        self._similarity_matrix = similarity_matrix
        if save:
            self.save_similarity_matrix()

    def set_probability(self, probability, save=True):
        self._probability = probability
        if save:
            self.save_probability()

    def set_transition(self, transition, save=True):
        self._transition = transition
        if save:
            self.save_transition()

    def set_entailer(self, entailer, save=True):
        self._entailer = entailer
        if save:
            self.save_entailer()

    def set_detective(self, detective, save=True):
        self._detective = detective
        if save:
            self.save_detective()

    def set_assignment(self, assignment, save=True):
        self._assignment = assignment
        if save:
            self.save_assignment()