def parse(self, jsonData): if jsonData['estimator'].endswith('Classifier'): from sklearn.tree import DecisionTreeClassifier self.estimator = DecisionTreeClassifier(criterion='gini') self.is_regr = False else: from sklearn.tree import DecisionTreeRegressor self.estimator = DecisionTreeRegressor(criterion='mse') self.is_regr = True self.params = {} import sys sys.path.insert(1, 'utils') import dict_utils self.params['max_depth'] = dict_utils.parse_related_properties( 'max_depth', jsonData, None) self.params['min_samples_split'] = dict_utils.parse_related_properties( 'min_samples_split', jsonData, 2) self.params['min_samples_leaf'] = dict_utils.parse_related_properties( 'min_samples_leaf', jsonData, 1) self.params['max_leaf_nodes'] = dict_utils.parse_related_properties( 'max_leaf_nodes', jsonData, None) sys.path.insert(1, 'output') import DecisionTree_OM self.output_manager = DecisionTree_OM.DecisionTree_OM(self)
def parse(self, jsonData): if jsonData['estimator'] == 'LinearSVC': from sklearn.svm import LinearSVC self.estimator = LinearSVC(random_state=0) self.is_regr = False elif jsonData['estimator'] == 'LinearSVR': from sklearn.svm import SVR self.estimator = SVR(kernel='linear') self.is_regr = True self.params = {} self.params['C'] = dict_utils.parse_related_properties('C_exp', jsonData, 0, is_exp=True) ''' if 'C' in jsonData: self.params['C'] = [jsonData['C']] elif 'C_lower_exp' in jsonData and 'C_upper_exp' in jsonData: import numpy as np l = jsonData['C_lower_exp'] u = jsonData['C_upper_exp'] self.params['C'] = np.logspace(l, u, u-l+1) elif 'C_lower_exp' in jsonData: self.params['C'] = [jsonData['C_lower_exp']] elif 'C_upper_exp' in jsonData: self.params['C'] = [jsonData['C_upper_exp']] else: self.params['C'] = 1 ''' import sys sys.path.insert(1, 'output') import SVM_OM self.output_manager = SVM_OM.SVM_OM(self)
def parse(self, jsonData): if jsonData['estimator'].endswith('Classifier'): from sklearn.ensemble import RandomForestClassifier self.estimator = RandomForestClassifier(criterion='gini') self.is_regr = False else: from sklearn.ensemble import RandomForestRegressor self.estimator = RandomForestRegressor(criterion='mse') self.is_regr = True self.params = {} import sys sys.path.insert(1, 'utils') import dict_utils self.params['n_estimators'] = dict_utils.parse_related_properties( 'n_estimators', jsonData, 100) self.params['max_depth'] = dict_utils.parse_related_properties( 'max_depth', jsonData, None) self.params['min_samples_split'] = dict_utils.parse_related_properties( 'min_samples_split', jsonData, 2) self.params['min_samples_leaf'] = dict_utils.parse_related_properties( 'min_samples_leaf', jsonData, 1) self.params[ 'min_weight_fraction_leaf'] = dict_utils.parse_related_properties( 'min_weight_fraction_leaf', jsonData, 0.0) self.params['max_features'] = dict_utils.parse_related_properties( 'max_features', jsonData, 'auto') self.params['max_leaf_nodes'] = dict_utils.parse_related_properties( 'max_leaf_nodes', jsonData, None) self.params[ 'min_impurity_decrease'] = dict_utils.parse_related_properties( 'min_impurity_decrease', jsonData, 0.0) self.params['n_jobs'] = dict_utils.parse_related_properties( 'n_jobs', jsonData, None) self.params['verbose'] = dict_utils.parse_related_properties( 'verbose', jsonData, 0) sys.path.insert(1, 'output') import RandomForest_OM self.output_manager = RandomForest_OM.RandomForest_OM(self)
def parse(self, jsonData): if jsonData['estimator'].endswith('Classifier'): from sklearn.neighbors import KNeighborsClassifier self.estimator = KNeighborsClassifier() self.is_regr = False else: from sklearn.neighbors import KNeighborsRegressor self.estimator = KNeighborsRegressor() self.is_regr = True self.params = {} import sys sys.path.insert(1, 'utils') import dict_utils self.params['n_neighbors'] = dict_utils.parse_related_properties( 'n_neighbors', jsonData, 5) sys.path.insert(1, 'output') import Knn_OM #as Knn_OM self.output_manager = Knn_OM.Knn_OM(self)