def Train(sess, train_images, train_labels, mnist_test_file, network_parameters, num_steps, save_path, training_params, eval_steps=0): """Train MNIST for a number of steps. Args: mnist_train_file: path of MNIST train data file. mnist_test_file: path of MNIST test data file. network_parameters: parameters for defining and training the network. num_steps: number of steps to run. Here steps = lots save_path: path where to save trained parameters. eval_steps: evaluate the model every eval_steps. Returns: the result after the final training step. Raises: ValueError: if the accountant_type is not supported. """ batch_size = FLAGS.batch_size params = { "accountant_type": FLAGS.accountant_type, "task_id": 0, "batch_size": FLAGS.batch_size, "projection_dimensions": FLAGS.projection_dimensions, "default_gradient_l2norm_bound": network_parameters.default_gradient_l2norm_bound, "num_hidden_layers": FLAGS.num_hidden_layers, "hidden_layer_num_units": FLAGS.hidden_layer_num_units, "num_examples": NUM_TRAINING_IMAGES, "learning_rate": FLAGS.lr, "end_learning_rate": FLAGS.end_lr, "learning_rate_saturate_epochs": FLAGS.lr_saturate_epochs } # Log different privacy parameters dependent on the accountant type. if FLAGS.accountant_type == "Amortized": params.update({ "flag_eps": FLAGS.eps, "flag_delta": FLAGS.delta, "flag_pca_eps": FLAGS.pca_eps, "flag_pca_delta": FLAGS.pca_delta, }) elif FLAGS.accountant_type == "Moments": params.update({ "sigma": FLAGS.sigma, "pca_sigma": FLAGS.pca_sigma, }) # Create the basic Mnist model. images = tf.get_default_graph().get_tensor_by_name("images:0") labels = tf.get_default_graph().get_tensor_by_name("labels:0") logits = tf.get_default_graph().get_tensor_by_name("logits:0") projection = tf.get_default_graph().get_tensor_by_name("projection:0") cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot( labels, 10)) # The actual cost is the average across the examples. cost = tf.reduce_sum(cost, [0]) / batch_size if FLAGS.accountant_type == "Amortized": priv_accountant = accountant.AmortizedAccountant(NUM_TRAINING_IMAGES) sigma = None pca_sigma = None with_privacy = FLAGS.eps > 0 elif FLAGS.accountant_type == "Moments": priv_accountant = accountant.GaussianMomentsAccountant( NUM_TRAINING_IMAGES) sigma = FLAGS.sigma pca_sigma = FLAGS.pca_sigma with_privacy = FLAGS.sigma > 0 else: raise ValueError("Undefined accountant type, needs to be " "Amortized or Moments, but got %s" % FLAGS.accountant) # Note: Here and below, we scale down the l2norm_bound by # batch_size. This is because per_example_gradients computes the # gradient of the minibatch loss with respect to each individual # example, and the minibatch loss (for our model) is the *average* # loss over examples in the minibatch. Hence, the scale of the # per-example gradients goes like 1 / batch_size. gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer( priv_accountant, [network_parameters.default_gradient_l2norm_bound / batch_size, True]) for var in training_params: if "gradient_l2norm_bound" in training_params[var]: l2bound = training_params[var]["gradient_l2norm_bound"] / batch_size gaussian_sanitizer.set_option(var, sanitizer.ClipOption(l2bound, True)) lr = tf.placeholder(tf.float32) eps = tf.placeholder(tf.float32) delta = tf.placeholder(tf.float32) init_ops = [] if network_parameters.projection_type == "PCA": with tf.variable_scope("pca"): # Compute differentially private PCA. all_data = tf.constant(train_images, dtype=tf.float32) pca_projection = dp_pca.ComputeDPPrincipalProjection( all_data, network_parameters.projection_dimensions, gaussian_sanitizer, [FLAGS.pca_eps, FLAGS.pca_delta], pca_sigma) assign_pca_proj = tf.assign(projection, pca_projection) init_ops.append(assign_pca_proj) # Add global_step global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="global_step") if with_privacy: gd_op = dp_optimizer.DPGradientDescentOptimizer( lr, [eps, delta], gaussian_sanitizer, sigma=sigma, batches_per_lot=FLAGS.batches_per_lot).minimize( cost, global_step=global_step) else: gd_op = tf.train.GradientDescentOptimizer(lr).minimize(cost) saver = tf.train.Saver() # We need to maintain the intialization sequence. for v in tf.trainable_variables(): sess.run(tf.variables_initializer([v])) sess.run(tf.global_variables_initializer()) sess.run(init_ops) results = [] start_time = time.time() prev_time = start_time filename = "results-0.json" log_path = os.path.join(save_path, filename) target_eps = np.array([float(s) for s in FLAGS.target_eps.split(",")]) target_eps = -np.sort(-target_eps) index_eps_to_save = 0 if FLAGS.accountant_type == "Amortized": # Only matters if --terminate_based_on_privacy is true. target_eps = [max(target_eps)] max_target_eps = max(target_eps) lot_size = FLAGS.batches_per_lot * FLAGS.batch_size lots_per_epoch = NUM_TRAINING_IMAGES / lot_size for step in xrange(num_steps): epoch = step / lots_per_epoch curr_lr = utils.VaryRate(FLAGS.lr, FLAGS.end_lr, FLAGS.lr_saturate_epochs, epoch) curr_eps = utils.VaryRate(FLAGS.eps, FLAGS.end_eps, FLAGS.eps_saturate_epochs, epoch) lot = np.random.choice(np.arange(NUM_TRAINING_IMAGES), lot_size, replace=False) #print lot.shape images_lot = train_images[lot, :] labels_lot = train_labels[lot] for i in xrange(FLAGS.batches_per_lot): _ = sess.run( [gd_op], feed_dict={ lr: curr_lr, eps: curr_eps, delta: FLAGS.delta, images: images_lot[i * FLAGS.batch_size:(i + 1) * FLAGS.batch_size, :], labels: labels_lot[i * FLAGS.batch_size:(i + 1) * FLAGS.batch_size] }) sys.stderr.write("step: %d\n" % step) # See if we should stop training due to exceeded privacy budget: should_terminate = False terminate_spent_eps_delta = None if with_privacy and FLAGS.terminate_based_on_privacy: terminate_spent_eps_delta = priv_accountant.get_privacy_spent( sess, target_eps=[max_target_eps])[0] # For the Moments accountant, we should always have # spent_eps == max_target_eps. if (terminate_spent_eps_delta.spent_delta > FLAGS.target_delta or terminate_spent_eps_delta.spent_eps > max_target_eps): should_terminate = True if (eval_steps > 0 and (step + 1) % eval_steps == 0) or should_terminate: if with_privacy: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_eps=target_eps) while index_eps_to_save < len( spent_eps_deltas ) and spent_eps_deltas[index_eps_to_save][1] < FLAGS.delta: saver.save( sess, save_path=save_path + "/eps" + str(spent_eps_deltas[index_eps_to_save][0]) + "_delta" + '%.2g' % spent_eps_deltas[index_eps_to_save][1] + "_pcasigma" + str(FLAGS.pca_sigma) + "_sigma" + str(FLAGS.sigma) + "/ckpt") index_eps_to_save += 1 else: spent_eps_deltas = [accountant.EpsDelta(0, 0)] for spent_eps, spent_delta in spent_eps_deltas: sys.stderr.write("spent privacy: eps %.4f delta %.5g\n" % (spent_eps, spent_delta)) saver.save(sess, save_path=save_path + "/ckpt") pred_train = np.argmax(predict(sess, train_images), axis=1) train_accuracy = np.mean(pred_train == train_labels) sys.stderr.write("train_accuracy: %.2f\n" % train_accuracy) # test_accuracy, mistakes = Eval(mnist_test_file, network_parameters, # num_testing_images=NUM_TESTING_IMAGES, # randomize=False, load_path=save_path, # save_mistakes=FLAGS.save_mistakes) # sys.stderr.write("eval_accuracy: %.2f\n" % test_accuracy) curr_time = time.time() elapsed_time = curr_time - prev_time prev_time = curr_time results.append({ "step": step + 1, # Number of lots trained so far. "elapsed_secs": elapsed_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, # "test_accuracy": test_accuracy, # "mistakes": mistakes }) loginfo = { "elapsed_secs": curr_time - start_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, # "test_accuracy": test_accuracy, "num_training_steps": step + 1, # Steps so far. # "mistakes": mistakes, "result_series": results } loginfo.update(params) if log_path: with tf.gfile.Open(log_path, "w") as f: json.dump(loginfo, f, indent=2) f.write("\n") f.close() if should_terminate: break
def Train(cifar_train_file, mnist_test_file, network_parameters, num_steps, save_path, eval_steps=0): """Train MNIST for a number of steps. Args: cifar_train_file: path of MNIST train data file. mnist_test_file: path of MNIST test data file. network_parameters: parameters for defining and training the network. num_steps: number of steps to run. Here steps = lots save_path: path where to save trained parameters. eval_steps: evaluate the model every eval_steps. Returns: the result after the final training step. Raises: ValueError: if the accountant_type is not supported. """ batch_size = FLAGS.batch_size params = { "accountant_type": FLAGS.accountant_type, "task_id": 0, "batch_size": FLAGS.batch_size, "default_gradient_l2norm_bound": network_parameters.default_gradient_l2norm_bound, "num_hidden_layers": FLAGS.num_hidden_layers, "hidden_layer_num_units": FLAGS.hidden_layer_num_units, "num_examples": NUM_TRAINING_IMAGES, "learning_rate": FLAGS.lr, "end_learning_rate": FLAGS.end_lr, "learning_rate_saturate_epochs": FLAGS.lr_saturate_epochs } params.update({"sigma": FLAGS.sigma}) with tf.Graph().as_default(), tf.Session() as sess, tf.device('/cpu:0'): # Create the basic Cifar model. images, labels = CifarInput(cifar_train_file, batch_size, FLAGS.randomize) logits, projection, training_params = utils.BuildNetwork( images, network_parameters) cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot( labels, 100)) # The actual cost is the average across the examples. cost = tf.reduce_sum(cost, [0]) / batch_size priv_accountant = accountant.GaussianMomentsAccountant( NUM_TRAINING_IMAGES) sigma = FLAGS.sigma with_privacy = FLAGS.sigma > 0 with_privacy = False # Note: Here and below, we scale down the l2norm_bound by # batch_size. This is because per_example_gradients computes the # gradient of the minibatch loss with respect to each individual # example, and the minibatch loss (for our model) is the *average* # loss over examples in the minibatch. Hence, the scale of the # per-example gradients goes like 1 / batch_size. gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer( priv_accountant, [ network_parameters.default_gradient_l2norm_bound / batch_size, True ]) for var in training_params: if "gradient_l2norm_bound" in training_params[var]: l2bound = training_params[var][ "gradient_l2norm_bound"] / batch_size gaussian_sanitizer.set_option( var, sanitizer.ClipOption(l2bound, True)) lr = tf.placeholder(tf.float32) eps = tf.placeholder(tf.float32) delta = tf.placeholder(tf.float32) init_ops = [] # Add global_step global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="global_step") if with_privacy: gd_op = dp_optimizer.DPGradientDescentOptimizer( lr, [eps, delta], gaussian_sanitizer, sigma=sigma, batches_per_lot=FLAGS.batches_per_lot).minimize( cost, global_step=global_step) else: gd_op = tf.train.GradientDescentOptimizer(lr).minimize(cost) saver = tf.train.Saver() coord = tf.train.Coordinator() _ = tf.train.start_queue_runners(sess=sess, coord=coord) # We need to maintain the intialization sequence. for v in tf.trainable_variables(): sess.run(tf.variables_initializer([v])) sess.run(tf.global_variables_initializer()) sess.run(init_ops) results = [] start_time = time.time() prev_time = start_time filename = "results-0.json" log_path = os.path.join(save_path, filename) target_eps = [float(s) for s in FLAGS.target_eps.split(",")] max_target_eps = max(target_eps) lot_size = FLAGS.batches_per_lot * FLAGS.batch_size lots_per_epoch = NUM_TRAINING_IMAGES / lot_size for step in range(num_steps): epoch = step / lots_per_epoch curr_lr = utils.VaryRate(FLAGS.lr, FLAGS.end_lr, FLAGS.lr_saturate_epochs, epoch) curr_eps = utils.VaryRate(FLAGS.eps, FLAGS.end_eps, FLAGS.eps_saturate_epochs, epoch) for _ in range(FLAGS.batches_per_lot): _ = sess.run([gd_op], feed_dict={ lr: curr_lr, eps: curr_eps, delta: FLAGS.delta }) sys.stderr.write("step: %d\n" % step) # See if we should stop training due to exceeded privacy budget: should_terminate = False terminate_spent_eps_delta = None if with_privacy and FLAGS.terminate_based_on_privacy: terminate_spent_eps_delta = priv_accountant.get_privacy_spent( sess, target_eps=[max_target_eps])[0] # For the Moments accountant, we should always have # spent_eps == max_target_eps. if (terminate_spent_eps_delta.spent_delta > FLAGS.target_delta or terminate_spent_eps_delta.spent_eps > max_target_eps): should_terminate = True if (eval_steps > 0 and (step + 1) % eval_steps == 0) or should_terminate: if with_privacy: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_eps=target_eps) else: spent_eps_deltas = [accountant.EpsDelta(0, 0)] for spent_eps, spent_delta in spent_eps_deltas: sys.stderr.write("spent privacy: eps %.4f delta %.5g\n" % (spent_eps, spent_delta)) saver.save(sess, save_path=save_path + "/ckpt") train_accuracy, _ = Eval(cifar_train_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=True, load_path=save_path) sys.stderr.write("train_accuracy: %.2f\n" % train_accuracy) test_accuracy, mistakes = Eval( mnist_test_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=False, load_path=save_path, save_mistakes=FLAGS.save_mistakes) sys.stderr.write("eval_accuracy: %.2f\n" % test_accuracy) curr_time = time.time() elapsed_time = curr_time - prev_time prev_time = curr_time results.append({ "step": step + 1, # Number of lots trained so far. "elapsed_secs": elapsed_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "mistakes": mistakes }) loginfo = { "elapsed_secs": curr_time - start_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "num_training_steps": step + 1, # Steps so far. "mistakes": mistakes, "result_series": results } loginfo.update(params) if log_path: with tf.gfile.Open(log_path, "w") as f: json.dump(loginfo, f, indent=2) f.write("\n") f.close() if should_terminate: print("\nTERMINATING.\n") break
def Train(mnist_train_file, mnist_test_file, network_parameters, num_steps, save_path, eval_steps=0): """Train MNIST for a number of steps. Args: mnist_train_file: path of MNIST train data file. mnist_test_file: path of MNIST test data file. network_parameters: parameters for defining and training the network. num_steps: number of steps to run. Here steps = lots save_path: path where to save trained parameters. eval_steps: evaluate the model every eval_steps. Returns: the result after the final training step. Raises: ValueError: if the accountant_type is not supported. """ batch_size = FLAGS.batch_size params = { "accountant_type": FLAGS.accountant_type, "task_id": 0, "batch_size": FLAGS.batch_size, "projection_dimensions": FLAGS.projection_dimensions, "default_gradient_l2norm_bound": network_parameters.default_gradient_l2norm_bound, "num_hidden_layers": FLAGS.num_hidden_layers, "hidden_layer_num_units": FLAGS.hidden_layer_num_units, "num_examples": NUM_TRAINING_IMAGES, "learning_rate": FLAGS.lr, "end_learning_rate": FLAGS.end_lr, "learning_rate_saturate_epochs": FLAGS.lr_saturate_epochs } # Log different privacy parameters dependent on the accountant type. if FLAGS.accountant_type == "Amortized": params.update({ "flag_eps": FLAGS.eps, "flag_delta": FLAGS.delta, "flag_pca_eps": FLAGS.pca_eps, "flag_pca_delta": FLAGS.pca_delta, }) elif FLAGS.accountant_type == "Moments": params.update({ "sigma": FLAGS.sigma, "pca_sigma": FLAGS.pca_sigma, }) with tf.Graph().as_default(), tf.Session() as sess, tf.device('/cpu:0'): # Create the basic Mnist model. images, labels = MnistInput(mnist_train_file, batch_size, FLAGS.randomize) logits, projection, training_params = utils.BuildNetwork( images, network_parameters) cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot( labels, 10)) # The actual cost is the average across the examples. cost = tf.reduce_sum(cost, [0]) / batch_size if FLAGS.accountant_type == "Amortized": priv_accountant = accountant.AmortizedAccountant( NUM_TRAINING_IMAGES) sigma = None pca_sigma = None with_privacy = FLAGS.eps > 0 elif FLAGS.accountant_type == "Moments": priv_accountant = accountant.GaussianMomentsAccountant( NUM_TRAINING_IMAGES) sigma = FLAGS.sigma pca_sigma = FLAGS.pca_sigma with_privacy = FLAGS.sigma > 0 else: raise ValueError("Undefined accountant type, needs to be " "Amortized or Moments, but got %s" % FLAGS.accountant) # Note: Here and below, we scale down the l2norm_bound by # batch_size. This is because per_example_gradients computes the # gradient of the minibatch loss with respect to each individual # example, and the minibatch loss (for our model) is the *average* # loss over examples in the minibatch. Hence, the scale of the # per-example gradients goes like 1 / batch_size. gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer( priv_accountant, [ network_parameters.default_gradient_l2norm_bound / batch_size, True ]) for var in training_params: if "gradient_l2norm_bound" in training_params[var]: l2bound = training_params[var][ "gradient_l2norm_bound"] / batch_size gaussian_sanitizer.set_option( var, sanitizer.ClipOption(l2bound, True)) lr = tf.placeholder(tf.float32) eps = tf.placeholder(tf.float32) delta = tf.placeholder(tf.float32) init_ops = [] if network_parameters.projection_type == "PCA": with tf.variable_scope("pca"): # Compute differentially private PCA. all_data, _ = MnistInput(mnist_train_file, NUM_TRAINING_IMAGES, False) pca_projection = dp_pca.ComputeDPPrincipalProjection( all_data, network_parameters.projection_dimensions, gaussian_sanitizer, [FLAGS.pca_eps, FLAGS.pca_delta], pca_sigma) assign_pca_proj = tf.assign(projection, pca_projection) init_ops.append(assign_pca_proj) # Add global_step global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="global_step") if with_privacy: gd_op = dp_optimizer.DPGradientDescentOptimizer( lr, [eps, delta], gaussian_sanitizer, sigma=sigma, batches_per_lot=FLAGS.batches_per_lot).minimize( cost, global_step=global_step) else: gd_op = tf.train.GradientDescentOptimizer(lr).minimize(cost) saver = tf.train.Saver() coord = tf.train.Coordinator() _ = tf.train.start_queue_runners(sess=sess, coord=coord) # We need to maintain the intialization sequence. for v in tf.trainable_variables(): sess.run(tf.variables_initializer([v])) sess.run(tf.global_variables_initializer()) sess.run(init_ops) results = [] start_time = time.time() prev_time = start_time filename = "results-0.json" log_path = os.path.join(save_path, filename) target_eps = [float(s) for s in FLAGS.target_eps.split(",")] if FLAGS.accountant_type == "Amortized": # Only matters if --terminate_based_on_privacy is true. target_eps = [max(target_eps)] max_target_eps = max(target_eps) lot_size = FLAGS.batches_per_lot * FLAGS.batch_size lots_per_epoch = NUM_TRAINING_IMAGES / lot_size for step in xrange(num_steps): epoch = step / lots_per_epoch curr_lr = utils.VaryRate(FLAGS.lr, FLAGS.end_lr, FLAGS.lr_saturate_epochs, epoch) curr_eps = utils.VaryRate(FLAGS.eps, FLAGS.end_eps, FLAGS.eps_saturate_epochs, epoch) for _ in xrange(FLAGS.batches_per_lot): _ = sess.run([gd_op], feed_dict={ lr: curr_lr, eps: curr_eps, delta: FLAGS.delta }) sys.stderr.write("step: %d\n" % step) # See if we should stop training due to exceeded privacy budget: should_terminate = False terminate_spent_eps_delta = None if with_privacy and FLAGS.terminate_based_on_privacy: terminate_spent_eps_delta = priv_accountant.get_privacy_spent( sess, target_eps=[max_target_eps])[0] # For the Moments accountant, we should always have # spent_eps == max_target_eps. if (terminate_spent_eps_delta.spent_delta > FLAGS.target_delta or terminate_spent_eps_delta.spent_eps > max_target_eps): should_terminate = True if (eval_steps > 0 and (step + 1) % eval_steps == 0) or should_terminate: if with_privacy: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_eps=target_eps) else: spent_eps_deltas = [accountant.EpsDelta(0, 0)] for spent_eps, spent_delta in spent_eps_deltas: sys.stderr.write("spent privacy: eps %.4f delta %.5g\n" % (spent_eps, spent_delta)) saver.save(sess, save_path=save_path + "/ckpt") train_accuracy, _ = Eval(mnist_train_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=True, load_path=save_path) sys.stderr.write("train_accuracy: %.2f\n" % train_accuracy) test_accuracy, mistakes = Eval( mnist_test_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=False, load_path=save_path, save_mistakes=FLAGS.save_mistakes) sys.stderr.write("eval_accuracy: %.2f\n" % test_accuracy) curr_time = time.time() elapsed_time = curr_time - prev_time prev_time = curr_time results.append({ "step": step + 1, # Number of lots trained so far. "elapsed_secs": elapsed_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "mistakes": mistakes }) loginfo = { "elapsed_secs": curr_time - start_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "num_training_steps": step + 1, # Steps so far. "mistakes": mistakes, "result_series": results } loginfo.update(params) if log_path: with tf.gfile.Open(log_path, "w") as f: json.dump(loginfo, f, indent=2) f.write("\n") f.close() if should_terminate: break network_parameters = utils.NetworkParameters() # If the ASCII proto isn't specified, then construct a config protobuf based # on 3 flags. network_parameters.input_size = IMAGE_SIZE**2 network_parameters.default_gradient_l2norm_bound = ( FLAGS.default_gradient_l2norm_bound) if FLAGS.projection_dimensions > 0 and FLAGS.num_conv_layers > 0: raise ValueError("Currently you can't do PCA and have convolutions" "at the same time. Pick one") # could add support for PCA after convolutions. # Currently BuildNetwork can build the network with conv followed by # projection, but the PCA training works on data, rather than data run # through a few layers. Will need to init the convs before running the # PCA, and need to change the PCA subroutine to take a network and perhaps # allow for batched inputs, to handle larger datasets. if FLAGS.num_conv_layers > 0: conv = utils.ConvParameters() conv.name = "conv1" conv.in_channels = 1 conv.out_channels = 128 conv.num_outputs = 128 * 14 * 14 network_parameters.conv_parameters.append(conv) # defaults for the rest: 5x5,stride 1, relu, maxpool 2x2,stride 2. # insize 28x28, bias, stddev 0.1, non-trainable. if FLAGS.num_conv_layers > 1: conv = network_parameters.ConvParameters() conv.name = "conv2" conv.in_channels = 128 conv.out_channels = 128 conv.num_outputs = 128 * 7 * 7 conv.in_size = 14 # defaults for the rest: 5x5,stride 1, relu, maxpool 2x2,stride 2. # bias, stddev 0.1, non-trainable. network_parameters.conv_parameters.append(conv) if FLAGS.num_conv_layers > 2: raise ValueError( "Currently --num_conv_layers must be 0,1 or 2." "Manually create a network_parameters proto for more.") if FLAGS.projection_dimensions > 0: network_parameters.projection_type = "PCA" network_parameters.projection_dimensions = FLAGS.projection_dimensions for i in xrange(FLAGS.num_hidden_layers): hidden = utils.LayerParameters() hidden.name = "hidden%d" % i hidden.num_units = FLAGS.hidden_layer_num_units hidden.relu = True hidden.with_bias = False hidden.trainable = not FLAGS.freeze_bottom_layers network_parameters.layer_parameters.append(hidden) logits = utils.LayerParameters() logits.name = "logits" logits.num_units = 10 logits.relu = False logits.with_bias = False network_parameters.layer_parameters.append(logits) inputs = tf.placeholder(tf.float32, [None, 784], name='inputs') outputs, _, _ = utils.BuildNetwork(inputs, network_parameters)
else: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_eps=None)[0] # Check whether we exceed the privacy budget if (spent_eps_deltas.spent_delta > max_delta or spent_eps_deltas.spent_eps > max_eps): abort_early = True print( "\n*** Discriminator training exceeded privacy budget, aborting the training of generator ****") else: final_eps = spent_eps_deltas.spent_eps final_delta = spent_eps_deltas.spent_delta else: # Training without privacy spent_eps_deltas = accountant.EpsDelta(np.inf, 1) # Train the generator if not abort_early: # Check for abort_early because we stop updating the generator # once we exceeded privacy budget. privacy_summary = summary_pb2.Summary(value=[ summary_pb2.Summary.Value(tag='eps', simple_value=final_eps)]) summary_writer.add_summary(privacy_summary, e) _, tb_g = sess.run([generator_step, tb_g_op]) if e % FLAGS.save_every == 0 or (e == FLAGS.num_epochs-1): summary_writer.add_summary(tb_g, e) end_time = time.time() if (e % FLAGS.save_every == 0) or (e == FLAGS.num_epochs-1) or abort_early:
def Train(mnist_train_file, mnist_test_file, mnist_validation_file, network_parameters, num_steps, save_path, total_rho, eval_steps=0): """Train MNIST for a number of steps. Args: mnist_train_file: path of MNIST train data file. mnist_test_file: path of MNIST test data file. network_parameters: parameters for defining and training the network. num_steps: number of steps to run. Here steps = lots save_path: path where to save trained parameters. eval_steps: evaluate the model every eval_steps. Returns: the result after the final training step. Raises: ValueError: if the accountant_type is not supported. """ batch_size = FLAGS.batch_size params = { "accountant_type": FLAGS.accountant_type, "task_id": 0, "batch_size": FLAGS.batch_size, "projection_dimensions": FLAGS.projection_dimensions, "default_gradient_l2norm_bound": network_parameters.default_gradient_l2norm_bound, "num_hidden_layers": FLAGS.num_hidden_layers, "hidden_layer_num_units": FLAGS.hidden_layer_num_units, "num_examples": NUM_TRAINING_IMAGES, "learning_rate": FLAGS.lr, "end_learning_rate": FLAGS.end_lr, "learning_rate_saturate_epochs": FLAGS.lr_saturate_epochs } # Log different privacy parameters dependent on the accountant type. if FLAGS.accountant_type == "Amortized": params.update({ "flag_eps": FLAGS.eps, "flag_delta": FLAGS.delta, "flag_pca_eps": FLAGS.pca_eps, "flag_pca_delta": FLAGS.pca_delta, }) elif FLAGS.accountant_type == "Moments": params.update({ "sigma": FLAGS.sigma, "pca_sigma": FLAGS.pca_sigma, }) elif FLAGS.accountant_type == "zCDP": params.update() with tf.device('/gpu:0'), tf.Graph().as_default(), tf.Session() as sess: # Create the basic Mnist model. images, labels = MnistInput(mnist_train_file, batch_size, FLAGS.randomize) logits, projection, training_params = utils.BuildNetwork( images, network_parameters) cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot( labels, 10)) # The actual cost is the average across the examples. cost = tf.reduce_sum(cost, [0]) / batch_size if FLAGS.accountant_type == "Amortized": priv_accountant = accountant.AmortizedAccountant( NUM_TRAINING_IMAGES) sigma = None pca_sigma = None with_privacy = FLAGS.eps > 0 elif FLAGS.accountant_type == "Moments": priv_accountant = accountant.GaussianMomentsAccountant( NUM_TRAINING_IMAGES) sigma = FLAGS.sigma pca_sigma = FLAGS.pca_sigma with_privacy = FLAGS.sigma > 0 elif FLAGS.accountant_type == "ZCDP": priv_accountant = accountant.DumpzCDPAccountant() else: raise ValueError("Undefined accountant type, needs to be " "Amortized or Moments, but got %s" % FLAGS.accountant) # Note: Here and below, we scale down the l2norm_bound by # batch_size. This is because per_example_gradients computes the # gradient of the minibatch loss with respect to each individual # example, and the minibatch loss (for our model) is the *average* # loss over examples in the minibatch. Hence, the scale of the # per-example gradients goes like 1 / batch_size. gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer( priv_accountant, [ network_parameters.default_gradient_l2norm_bound / batch_size, True ]) for var in training_params: if "gradient_l2norm_bound" in training_params[var]: l2bound = training_params[var][ "gradient_l2norm_bound"] / batch_size gaussian_sanitizer.set_option( var, sanitizer.ClipOption(l2bound, True)) lr = tf.placeholder(tf.float32) eps = tf.placeholder(tf.float32) delta = tf.placeholder(tf.float32) varsigma = tf.placeholder(tf.float32, shape=[]) init_ops = [] if network_parameters.projection_type == "PCA": with tf.variable_scope("pca"): # Compute differentially private PCA. all_data, _ = MnistInput(mnist_train_file, NUM_TRAINING_IMAGES, False) pca_projection = dp_pca.ComputeDPPrincipalProjection( all_data, network_parameters.projection_dimensions, gaussian_sanitizer, [FLAGS.pca_eps, FLAGS.pca_delta], pca_sigma) assign_pca_proj = tf.assign(projection, pca_projection) init_ops.append(assign_pca_proj) # Add global_step global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="global_step") with_privacy = True if with_privacy: gd_op = dp_optimizer.DPGradientDescentOptimizer( lr, [eps, delta], gaussian_sanitizer, varsigma, batches_per_lot=FLAGS.batches_per_lot).minimize( cost, global_step=global_step) else: print("No privacy") gd_op = tf.train.GradientDescentOptimizer(lr).minimize(cost) saver = tf.train.Saver() coord = tf.train.Coordinator() _ = tf.train.start_queue_runners(sess=sess, coord=coord) # We need to maintain the intialization sequence. for v in tf.trainable_variables(): sess.run(tf.variables_initializer([v])) sess.run(tf.global_variables_initializer()) sess.run(init_ops) results = [] start_time = time.time() prev_time = start_time filename = "results" + datetime.datetime.now().strftime( '%Y-%m-%d-%H-%M-%S') + ".json" log_path = os.path.join(save_path, filename) target_eps = [float(s) for s in FLAGS.target_eps.split(",")] if FLAGS.accountant_type == "Amortized": # Only matters if --terminate_based_on_privacy is true. target_eps = [max(target_eps)] max_target_eps = max(target_eps) lot_size = FLAGS.batches_per_lot * FLAGS.batch_size lots_per_epoch = NUM_TRAINING_IMAGES / lot_size # previous_epoch = -1 rho_tracking = [0] validation_accuracy_list = [] previous_validaccuracy = 0 tracking_sigma = [] curr_sigma = 10 # total budget rhototal = total_rho for step in range(num_steps): epoch = step // np.ceil(lots_per_epoch) curr_lr = utils.VaryRate(FLAGS.lr, FLAGS.end_lr, FLAGS.lr_saturate_epochs, epoch) curr_eps = utils.VaryRate(FLAGS.eps, FLAGS.end_eps, FLAGS.eps_saturate_epochs, epoch) old_sigma = curr_sigma #validation based decay #period=10, threshold=0.01, decay_factor=0.9 period = 10 decay_factor = 0.8 threshold = 0.01 m = 5 if epoch - previous_epoch == 1 and ( epoch + 1) % period == 0: #checking epoch current_validaccuracy = sum(validation_accuracy_list[-m:]) / m if current_validaccuracy - previous_validaccuracy < threshold: curr_sigma = decay_factor * curr_sigma previous_validaccuracy = current_validaccuracy if old_sigma != curr_sigma: print(curr_sigma) #for tracking by epoch if epoch - previous_epoch == 1: tracking_sigma.append(curr_sigma) rho_tracking.append(rho_tracking[-1] + 1 / (2.0 * curr_sigma**2)) previous_epoch = epoch if with_privacy == True and rho_tracking[-1] > rhototal: print("stop at epoch%d" % epoch) break print(rho_tracking) print(rho_tracking) print(tracking_sigma) for _ in range(FLAGS.batches_per_lot): _ = sess.run( [gd_op], feed_dict={ lr: curr_lr, eps: curr_eps, delta: FLAGS.delta, varsigma: curr_sigma }) sys.stderr.write("step: %d\n" % step) # See if we should stop training due to exceeded privacy budget: should_terminate = False terminate_spent_eps_delta = None if with_privacy and FLAGS.terminate_based_on_privacy: terminate_spent_eps_delta = priv_accountant.get_privacy_spent( sess, target_eps=[max_target_eps])[0] # For the Moments accountant, we should always have # spent_eps == max_target_eps. if (terminate_spent_eps_delta.spent_delta > FLAGS.target_delta or terminate_spent_eps_delta.spent_eps > max_target_eps): should_terminate = True if (eval_steps > 0 and (step + 1) % eval_steps == 0) or should_terminate: if with_privacy: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_eps=target_eps) print(spent_eps_deltas) else: spent_eps_deltas = [accountant.EpsDelta(0, 0)] for spent_eps, spent_delta in spent_eps_deltas: sys.stderr.write("spent privacy: eps %.4f delta %.5g\n" % (spent_eps, spent_delta)) saver.save(sess, save_path=save_path + "/ckpt") train_accuracy, _ = Eval(mnist_train_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=True, load_path=save_path) sys.stderr.write("train_accuracy: %.2f\n" % train_accuracy) test_accuracy, mistakes = Eval( mnist_test_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=False, load_path=save_path, save_mistakes=FLAGS.save_mistakes) sys.stderr.write("eval_accuracy: %.2f\n" % test_accuracy) validation_accuracy, mistakes = Eval( mnist_validation_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=False, load_path=save_path, save_mistakes=FLAGS.save_mistakes) sys.stderr.write("validation_accuracy: %.2f\n" % validation_accuracy) validation_accuracy_list.append(validation_accuracy) curr_time = time.time() elapsed_time = curr_time - prev_time prev_time = curr_time results.append({ "step": step + 1, # Number of lots trained so far. "elapsed_secs": elapsed_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "mistakes": mistakes }) loginfo = { "elapsed_secs": curr_time - start_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "num_training_steps": step + 1, # Steps so far. "mistakes": mistakes, "result_series": results } loginfo.update(params) if log_path: with tf.gfile.Open(log_path, "w") as f: json.dump(loginfo, f, indent=2) f.write("\n") f.close() if should_terminate: break