def test_train(): """Test training use nvidia-smi -i 5 -l 5 to monitor GPU -i GPU device number -l interval to refresh """ # load cutomized conf conf = DIFFERNET_CONF logger.info(f"working folder: {conf.get('differnet_work_dir')}") differnetutil = DiffernetUtil(conf, "black1") # train the model differnetutil.train_model()
def test_model(): """Test training""" # load cutomized conf conf = DIFFERNET_CONF logger.info(f"working folder: {conf.get('differnet_work_dir')}") differnetutil = DiffernetUtil(conf, "black1") t1 = time.process_time() # test trained model differnetutil.test_model() t2 = time.process_time() elapsed_time = t2 - t1 logger.info(f"elapsed time: {elapsed_time}")
def test_detect(self): """Test Detection""" # load cutomized conf conf = DIFFERNET_CONF logger.info(f"working folder: {conf.get('differnet_work_dir')}") t0 = time.process_time() differnetutil = DiffernetUtil(conf, "black1") differnetutil.load_model() t1 = time.process_time() elapsed_time = t1 - t0 logger.info(f"Model load elapsed time: {elapsed_time}") img = cv2.imread( os.path.join( differnetutil.test_dir, "defect", "Camera0_202009142018586_product.png" ), cv2.IMREAD_UNCHANGED, ) t1 = time.process_time() ret = differnetutil.detect(img, 10) # calculate time t2 = time.process_time() elapsed_time = t2 - t1 logger.info(f"Detection elapsed time: {elapsed_time}") assert ret == True img = cv2.imread( os.path.join( differnetutil.test_dir, "good", "Camera0_202009142018133_product.png" ), cv2.IMREAD_UNCHANGED, ) t2 = time.process_time() ret = differnetutil.detect(img, 10) t3 = time.process_time() elapsed_time = t3 - t2 logger.info(f"Detection elapsed time: {elapsed_time}") assert ret == False