示例#1
0
def ajax_get_current_hot_weibo():
    task_name = request.args.get('task_name', '')
    update_time = request.args.get("update_time", "")
    pinyin_task_name = pinyin.get(task_name.encode('utf-8'),
                                  format='strip',
                                  delimiter="_")
    index_name = "stimulation_" + pinyin_task_name
    index_type = "stimulation_results"
    es_results = es_prediction.get(index=index_name,
                                   doc_type=index_type,
                                   id=update_time)["_source"]
    results = json.loads(es_results["current_hot_weibo"])

    attribute_list = [
        "comment", "uid", "text", "uname", "fansnum", "retweet", "mid", "geo",
        "photo_url", "statusnum", "timestamp"
    ]
    return_list = []
    for each in results:
        new_dict = dict()
        for item in attribute_list:
            new_dict[item] = each[item]
        return_list.append(new_dict)

    return json.dumps(return_list)
示例#2
0
def ajax_get_future_user_info():
    task_name = request.args.get('task_name','')
    update_time = request.args.get("update_time","")
    pinyin_task_name = pinyin.get(task_name.encode('utf-8'), format='strip', delimiter="_")
    index_name = "stimulation_"+pinyin_task_name
    index_type = "stimulation_results"
    es_results = es_prediction.get(index=index_name, doc_type=index_type, id=update_time)["_source"]
    results = es_results["future_user_info"]

    return results
示例#3
0
def get_task_detail():
    task_name = request.args.get('task_name','')
    pinyin_task_name = pinyin.get(task_name.encode('utf-8'), format='strip', delimiter="_")
    task_detail = es_prediction.get(index=index_manage_interfere_task, doc_type=type_manage_interfere_task,id=pinyin_task_name)["_source"]
    task_dict = dict()
    attribute_list = ["task_name", "remark", "submit_user","submit_time","start_time", "stop_time","update_time","finish","should_keywords","must_keywords"]
    for item in attribute_list:
        task_dict[item] = task_detail[item]

    return json.dumps(task_dict)
示例#4
0
def ajax_show_social_sensors():
    results = []
    task_detail = es_prediction.get(index="manage_sensing_task",
                                    doc_type="task",
                                    id="social_sensing_task")["_source"]
    uid_list = json.loads(task_detail["social_sensors"])

    profile_results = es_user_profile.mget(index=profile_index_name,
                                           doc_type=profile_index_type,
                                           body={"ids": uid_list})["docs"]
    for item in profile_results:
        '''
        tmp = []
        if item["found"]:
            tmp.append(item["_source"]["nick_name"])
            tmp.append(item["_source"]["uid"])
            tmp.append(item["_source"]["user_location"])
            tmp.append(item["_source"]["fansnum"])
            tmp.append(item["_source"]["statusnum"])
            tmp.append(item["_source"]["friendsnum"])
        else:
            tmp.append(item["_id"])
            tmp.append(item["_id"])
            tmp.append('')
            tmp.append('')
            tmp.append('')
            tmp.append('')
        results.append(tmp)
        '''
        if item["found"]:
            results.append(item['_source'])
        else:
            item_new = {}
            item_new['photo_url'] = ''
            item_new['nick_name'] = ''
            item_new['uid'] = item['_id']
            item_new['sex'] = ''
            item_new['fansnum'] = ''
            item_new['friendsnum'] = ''
            item_new['user_location'] = ''
            item_new['create_at'] = ''

            results.append(item_new)

    return json.dumps(results)
示例#5
0
def ajax_delete_social_sensors():
    finish = ["0"]
    delete_user = request.args.get("delete_users", '')  # &.join
    task_detail = es_prediction.get(index="manage_sensing_task",
                                    doc_type="task",
                                    id="social_sensing_task")["_source"]
    sensors = json.loads(task_detail["social_sensors"])
    if delete_user:
        uid_list = delete_user.split("&")
        new_list = set(sensors) - set(uid_list)
        task_detail["social_sensors"] = json.dumps(list(new_list))
        es_prediction.index(index="manage_sensing_task",
                            doc_type="task",
                            id="social_sensing_task",
                            body=task_detail)
        finish = ["1"]

    return json.dumps(finish)
示例#6
0
def ajax_get_hot_user():
    task_name = request.args.get('task_name','')
    update_time = request.args.get("update_time","")
    pinyin_task_name = pinyin.get(task_name.encode('utf-8'), format='strip', delimiter="_")
    index_name = "stimulation_"+pinyin_task_name
    index_type = "stimulation_results"
    es_results = es_prediction.get(index=index_name, doc_type=index_type, id=update_time)["_source"]
    future_results = json.loads(es_results["future_results"])

    results = []
    for start_uid, end_dict in future_results.iteritems():
        tmp_uid_list = end_dict.keys()
        tmp_uid_list.append(start_uid)
        tmp_profile = es_user_profile.mget(index=profile_index_name, doc_type=profile_index_type,body={"ids":tmp_uid_list})["docs"]
        tmp_profile_dict = dict()
        for item in tmp_profile:
            if item["found"]:
                nick_name = item["_source"]["nick_name"]
                fansnum = item["_source"]["fansnum"]
            else:
                nick_name = start_uid
                fansnum = ''
            tmp_iter = dict()
            tmp_iter["nick_name"] = nick_name
            tmp_iter["fansnum"] = fansnum
            tmp_iter["uid"] = item["_id"]
            if item["_id"] != start_uid:
                tmp_iter["retweeted"] = end_dict[item["_id"]]
            tmp_profile_dict[item["_id"]] = tmp_iter
        tmp = []
        tmp.extend([start_uid, tmp_profile_dict[start_uid]["nick_name"], tmp_profile_dict[start_uid]["fansnum"]])
        tmp.append(len(end_dict))
        tmp.append(int(sum(end_dict.values())))
        tmp_profile_dict.pop(start_uid)
        tmp_sorted_profile = sorted(tmp_profile_dict.values(), key=lambda x:x["retweeted"], reverse=True)
        tmp.append(tmp_sorted_profile)
        results.append(tmp)
    results = sorted(results, key=lambda x:x[3], reverse=True)

    return json.dumps(results)
示例#7
0
def ajax_add_social_sensor():
    finish = ["0"]
    add_user = request.args.get("add_users", '')  # &.join
    task_detail = es_prediction.get(index="manage_sensing_task",
                                    doc_type="task",
                                    id="social_sensing_task")["_source"]
    sensors = json.loads(task_detail["social_sensors"])
    if add_user:
        uid_list = add_user.split(",")  #改成了“,”
        if uid_list:
            in_set = set(uid_list) & set(sensors)
            out_set = set(uid_list) - set(sensors)
            if out_set:
                new_list = list(set(uid_list) | set(sensors))
                task_detail["social_sensors"] = json.dumps(new_list)
                es_prediction.index(index="manage_sensing_task",
                                    doc_type="task",
                                    id="social_sensing_task",
                                    body=task_detail)
                finish = ["1"]
    results = [list(in_set), list(out_set)]

    #return json.dumps(results)
    return json.dumps(finish)
示例#8
0
def get_origin_weibo_detail(ts, size, order, message_type=1):
    topic_value_dict = json.loads(r.get("topic_value_dict"))
    task_detail = es_prediction.get(index=index_sensing_task,
                                    doc_type=_id,
                                    id=ts)['_source']

    mid_value = json.loads(task_detail['mid_topic_value'])
    duplicate_dict = json.loads(task_detail['duplicate_dict'])
    tmp_duplicate_dict = dict()
    for k, v in duplicate_dict.iteritems():
        try:
            tmp_duplicate_dict[v].append(k)
        except:
            tmp_duplicate_dict[v] = [k, v]

    if message_type == 1:
        weibo_detail = json.loads(task_detail['origin_weibo_detail'])
    elif message_type == 2:
        weibo_detail = json.loads(task_detail['retweeted_weibo_detail'])
    else:
        weibo_detail = json.loads(task_detail['sensitive_weibo_detail'])
    weibo_detail_list = []
    if weibo_detail:
        for iter_mid, item in weibo_detail.iteritems():
            tmp = []
            tmp.append(iter_mid)
            tmp.append(item[iter_mid])
            tmp.append(item['retweeted'])
            tmp.append(item['comment'])
            weibo_detail_list.append(tmp)
    mid_list = weibo_detail.keys()

    results = []
    query_body = {
        "query": {
            "filtered": {
                "filter": {
                    "terms": {
                        "mid": mid_list
                    }
                }
            }
        },
        "size": 1000,
        "sort": {
            "timestamp": {
                "order": "desc"
            }
        }
    }

    index_list = []
    datetime = ts2datetime(ts)
    datetime_1 = ts2datetime(ts - DAY)
    index_name = flow_text_index_name_pre + datetime
    exist_es = es_text.indices.exists(index_name)
    if exist_es:
        index_list.append(index_name)
    index_name_1 = flow_text_index_name_pre + datetime_1
    exist_es_1 = es_text.indices.exists(index_name_1)
    if exist_es_1:
        index_list.append(index_name_1)

    if index_list and mid_list:
        search_results = es_text.search(index=index_list,
                                        doc_type=flow_text_index_type,
                                        body=query_body)["hits"]["hits"]
    else:
        search_results = []

    uid_list = []
    text_dict = dict()  # 文本信息
    portrait_dict = dict()  # 背景信息
    sort_results = []
    if search_results:
        for item in search_results:
            uid_list.append(item["_source"]['uid'])
            text_dict[item['_id']] = item['_source']  # _id是mid
        if uid_list:
            portrait_result = es_profile.mget(
                index=profile_index_name,
                doc_type=profile_index_type,
                body={"ids": uid_list},
                fields=['nick_name', 'photo_url'])["docs"]
            for item in portrait_result:
                if item['found']:
                    portrait_dict[item['_id']] = {
                        "nick_name": item["fields"]["nick_name"][0],
                        "photo_url": item["fields"]["photo_url"][0]
                    }
                else:
                    portrait_dict[item['_id']] = {
                        "nick_name": item['_id'],
                        "photo_url": ""
                    }

        if order == "total":
            sorted_list = sorted(weibo_detail_list,
                                 key=lambda x: x[1],
                                 reverse=True)
        elif order == "retweeted":
            sorted_list = sorted(weibo_detail_list,
                                 key=lambda x: x[2],
                                 reverse=True)
        elif order == "comment":
            sorted_list = sorted(weibo_detail_list,
                                 key=lambda x: x[3],
                                 reverse=True)
        else:
            sorted_list = weibo_detail_list

        count_n = 0
        results_dict = dict()
        mid_index_dict = dict()
        for item in sorted_list:  # size
            mid = item[0]
            iter_text = text_dict.get(mid, {})
            temp = []
            # uid, nick_name, photo_url, text, sentiment, timestamp, geo, common_keywords, message_type
            if iter_text:
                uid = iter_text['uid']
                temp.append(uid)
                iter_portrait = portrait_dict.get(uid, {})
                if iter_portrait:
                    temp.append(iter_portrait['nick_name'])
                    temp.append(iter_portrait['photo_url'])
                else:
                    temp.extend([uid, ''])
                temp.append(iter_text["text"])
                temp.append(iter_text["sentiment"])
                temp.append(ts2date(iter_text['timestamp']))
                temp.append(iter_text['geo'])
                if message_type == 1:
                    temp.append(1)
                elif message_type == 2:
                    temp.append(3)
                else:
                    temp.append(iter_text['message_type'])
                temp.append(item[2])
                temp.append(item[3])
                temp.append(iter_text.get('sensitive', 0))
                temp.append(iter_text['timestamp'])
                temp.append(mid_value[mid])
                temp.append(mid)
                results.append(temp)
            count_n += 1

        results = sorted(results,
                         key=operator.itemgetter(-4, -2, -6),
                         reverse=True)  # -4 -2 -3
        sort_results = []
        count = 0
        for item in results:
            sort_results.append([item])
            mid_index_dict[item[-1]] = count
            count += 1

        if tmp_duplicate_dict:
            remove_list = []
            value_list = tmp_duplicate_dict.values()  # [[mid, mid], ]
            for item in value_list:
                tmp = []
                for mid in item:
                    if mid_index_dict.get(mid, 0):
                        tmp.append(mid_index_dict[mid])
                if len(tmp) > 1:
                    tmp_min = min(tmp)
                else:
                    continue
                tmp.remove(tmp_min)
                for iter_count in tmp:
                    sort_results[tmp_min].extend(sort_results[iter_count])
                    remove_list.append(sort_results[iter_count])
            if remove_list:
                for item in remove_list:
                    sort_results.remove(item)

    return sort_results
示例#9
0
def get_retweet_weibo_detail(ts, size, text_type, type_value):
    task_detail = es_prediction.get(index=index_sensing_task,
                                    doc_type=_id,
                                    id=ts)['_source']
    origin_weibo_detail = json.loads(task_detail['origin_weibo_detail'])
    retweeted_weibo_detail = json.loads(task_detail['retweeted_weibo_detail'])

    mid_list = []
    mid_list.extend(origin_weibo_detail.keys())
    mid_list.extend(retweeted_weibo_detail.keys())

    query_body = {
        "query": {
            "filtered": {
                "filter": {
                    "bool": {
                        "must": [{
                            "range": {
                                "timestamp": {
                                    "gte": ts - time_interval,
                                    "lt": ts
                                }
                            }
                        }, {
                            "terms": {
                                "root_mid": mid_list
                            }
                        }]
                    }
                }
            }
        },
        "sort": {
            "timestamp": {
                "order": "desc"
            }
        },
        "size": 100
    }

    if text_type == "message_type":
        query_body['query']['filtered']['filter']['bool']['must'].append(
            {"term": {
                text_type: type_value
            }})
    if text_type == "sentiment":
        #if isinstance(type_value, str):
        if len(type_value) == 1:
            query_body['query']['filtered']['filter']['bool']['must'].append(
                {"term": {
                    text_type: type_value
                }})
        else:
            query_body['query']['filtered']['filter']['bool']['must'].append(
                {"terms": {
                    text_type: type_value
                }})

    datetime = ts2datetime(ts)
    datetime_1 = ts2datetime(ts - time_interval)
    index_name = flow_text_index_name_pre + datetime
    exist_es = es_text.indices.exists(index_name)
    index_name_1 = flow_text_index_name_pre + datetime_1
    exist_es_1 = es_text.indices.exists(index_name_1)

    # 1. 查询微博
    if datetime == datetime_1 and exist_es:
        search_results = es_text.search(index=index_name,
                                        doc_type=flow_text_index_type,
                                        body=query_body)["hits"]["hits"]
    elif datetime != datetime_1 and exist_es_1:
        search_results = es_text.search(index=index_name_1,
                                        doc_type=flow_text_index_type,
                                        body=query_body)["hits"]["hits"]
    else:
        search_results = []
    #print search_results
    # 2. 获取微博相关信息
    results = []
    uid_list = []
    if search_results:
        for item in search_results:
            uid_list.append(item["_source"]['uid'])
        if uid_list:
            portrait_result = es_profile.mget(
                index=profile_index_name,
                doc_type=profile_index_type,
                body={"ids": uid_list},
                fields=['nick_name', 'photo_url'])["docs"]

        for i in range(len(uid_list)):
            item = search_results[i]['_source']
            temp = []
            # uid, nick_name, photo_url, text, sentiment, timestamp, geo, common_keywords, message_type
            temp.append(item['uid'])
            if portrait_result[i]['found']:
                temp.append(portrait_result[i]["fields"]["nick_name"][0])
                temp.append(portrait_result[i]["fields"]["photo_url"][0])
            else:
                temp.append(item['uid'])
                temp.append("")
            temp.append(item["text"])
            #print item['text']
            temp.append(item["sentiment"])
            temp.append(ts2date(item['timestamp']))
            temp.append(item['geo'])
            temp.append(item["message_type"])
            results.append(temp)

    return results
示例#10
0
def ajax_get_diffusion_path():
    task_name = request.args.get('task_name', '')
    update_time = request.args.get("update_time", "")
    pinyin_task_name = pinyin.get(task_name.encode('utf-8'),
                                  format='strip',
                                  delimiter="_")
    index_name = "stimulation_" + pinyin_task_name
    index_type = "stimulation_results"
    es_results = es_prediction.get(index=index_name,
                                   doc_type=index_type,
                                   id=update_time)["_source"]
    #print 'keys::::::::',es_results.keys()
    #results = es_results["diffusion"]
    results = json.loads(es_results["diffusion_path"])

    # uid_set = set()
    # root_uid_set = set()
    # for k,v in results.iteritems():
    #     uid_set.add(k)
    #     uid_set = uid_set|set(v)
    #     root_uid_set.add(k)
    # uid_list = list(uid_set)
    # root_uid_list = list(root_uid_set)

    # user_info = dict()
    # if uid_list:
    #     es_results = es_user_profile.mget(index=profile_index_name, doc_type=profile_index_type,body={"ids":uid_list})["docs"]
    #     for item in es_results:
    #         tmp = dict()
    #         if item["found"]:
    #             item = item["_source"]
    #             tmp["uid"] = item["uid"]
    #             tmp["photo_url"] = item["photo_url"]
    #             if item["nick_name"]:
    #                 tmp["nick_name"] = item["nick_name"]
    #             else:
    #                 tmp["nick_name"] = item["uid"]
    #             tmp["fansnum"] = item["fansnum"]
    #             tmp["friendsnum"] = item["friendsnum"]
    #             tmp["statusnum"] = item["statusnum"]
    #             tmp["location"] = item["user_location"]
    #         else:
    #             tmp["uid"] = item["_id"]
    #             tmp["photo_url"] = ""
    #             tmp["nick_name"] = item["_id"]
    #             tmp["fansnum"] = ""
    #             tmp["friendsnum"] = ""
    #             tmp["statusnum"] = ""
    #             tmp["location"] = ""
    #         user_info[tmp["uid"]] = tmp

    # results_dic_list = []

    # for root_uid,uid_list in results.iteritems():
    #     results_dic_list_item = {}
    #     results_dic_list_item["root_uid"] = root_uid
    #     results_dic_list_item["uid_list"] = uid_list
    #     results_dic_list.append(results_dic_list_item)

    # return json.dumps([results_dic_list, user_info])

    # uid_name_list = []

    # for uid in uid_list:
    #     name = user_info[uid]["nick_name"]
    #     if uid in root_uid_list:
    #         if name :
    #             uid_name_list.append([1,name])
    #         else:
    #             uid_name_list.append([1,uid])
    #     else:
    #         if name :
    #             uid_name_list.append([2,name])
    #         else:
    #             uid_name_list.append([2,uid])

    # link_list = []
    # for root_uid,uid_list in results.iteritems():
    #     for uid in uid_list:
    #         root_name =

    return json.dumps(results)
示例#11
0
def get_sensitive_text_detail(task_name, ts, user, order):
    _id = user + '-' + task_name
    task_detail = es.get(index=index_sensing_task, doc_type=_id,
                         id=ts)['_source']
    weibo_detail = json.loads(task_detail['sensitive_weibo_detail'])

    weibo_detail_list = []
    if weibo_detail:
        for iter_mid, item in weibo_detail.iteritems():
            tmp = []
            tmp.append(iter_mid)
            tmp.append(item[iter_mid])
            tmp.append(item['retweeted'])
            tmp.append(item['comment'])
            weibo_detail_list.append(tmp)
    mid_list = weibo_detail.keys()

    results = []
    query_body = {
        "query": {
            "filtered": {
                "filter": {
                    "terms": {
                        "mid": mid_list
                    }
                }
            }
        }
    }

    index_list = []
    datetime = ts2datetime(ts)
    datetime_1 = ts2datetime(ts - DAY)
    index_name = flow_text_index_name_pre + datetime
    exist_es = es_text.indices.exists(index_name)
    if exist_es:
        index_list.append(index_name)
    index_name_1 = flow_text_index_name_pre + datetime_1
    exist_es_1 = es_text.indices.exists(index_name_1)
    if exist_es_1:
        index_list.append(index_name_1)

    if index_list and mid_list:
        search_results = es_text.search(index=index_list,
                                        doc_type=flow_text_index_type,
                                        body=query_body)["hits"]["hits"]
    else:
        search_results = []

    uid_list = []
    text_dict = dict()  # 文本信息
    portrait_dict = dict()  # 背景信息
    if search_results:
        for item in search_results:
            uid_list.append(item["_source"]['uid'])
            text_dict[item['_id']] = item['_source']  # _id是mid
        if uid_list:
            portrait_result = es_profile.mget(
                index=profile_index_name,
                doc_type=profile_index_type,
                body={"ids": uid_list},
                fields=['nick_name', 'photo_url'])["docs"]
            for item in portrait_result:
                if item['found']:
                    portrait_dict[item['_id']] = {
                        "nick_name": item["fields"]["nick_name"][0],
                        "photo_url": item["fields"]["photo_url"][0]
                    }
                else:
                    portrait_dict[item['_id']] = {
                        "nick_name": item['_id'],
                        "photo_url": ""
                    }

        if order == "total":
            sorted_list = sorted(weibo_detail_list,
                                 key=lambda x: x[1],
                                 reverse=True)
        elif order == "retweeted":
            sorted_list = sorted(weibo_detail_list,
                                 key=lambda x: x[2],
                                 reverse=True)
        elif order == "comment":
            sorted_list = sorted(weibo_detail_list,
                                 key=lambda x: x[3],
                                 reverse=True)
        else:
            sorted_list = weibo_detail_list

        count_n = 0
        for item in sorted_list:
            mid = item[0]
            iter_text = text_dict.get(mid, {})
            temp = []
            # uid, nick_name, photo_url, text, sentiment, timestamp, geo, common_keywords, message_type
            if iter_text:
                uid = iter_text['uid']
                temp.append(uid)
                iter_portrait = portrait_dict.get(uid, {})
                if iter_portrait:
                    temp.append(iter_portrait['nick_name'])
                    temp.append(iter_portrait['photo_url'])
                else:
                    temp.extend([uid, ''])
                temp.append(iter_text["text"])
                temp.append(iter_text["sentiment"])
                temp.append(ts2date(iter_text['timestamp']))
                temp.append(iter_text['geo'])
                temp.append(iter_text['message_type'])
                temp.append(item[2])
                temp.append(item[3])
                temp.append(iter_text.get('sensitive', 0))
                count_n += 1
                results.append(temp)

        if results and order == "ts":
            results = sorted(results, key=lambda x: x[5], reverse=True)

        if results and order == "sensitive":
            results = sorted(results, key=lambda x: x[-1], reverse=True)

    return results
示例#12
0
def get_weibo_content(topic,start_ts,end_ts,opinion,sort_item='timestamp'): #微博内容
    weibo_dict = {}
    #a = json.dumps(opinion)
    #opinion = '圣保罗_班底_巴西_康熙'
    #[u'毛泽东', u'纪念日', u'亲人', u'毛泽东思想', u'万岁']
    #opinion = json.dumps(opinion)
    #opinion = '毛泽东_纪念日_亲人_毛泽东思想_万岁'
    # opinion_str = opinion[0]
    # opinion_str = '_'.join(opinion)
    # for i in range(1,len(opinion)):
    #     opinion_str = opinion_str + '_' + opinion_str
    # query_body = {
    #     'query':{
    #         'bool':{
    #             'must':[
    #                 {'wildcard':{'keys':opinion}},
    #                 {'term':{'name':topic}},
    #                 {'range':{'start_ts':{'lte':start_ts}}},
    #                 {'range':{'end_ts':{'gte':end_ts}}}
    #             ]
    #         }
    #     },
    #     'size':100000
    # }  #没有查到uid   每次的id不一样   
    # print 'opinion:::::::;;',opinion
    # start_ts = int(start_ts)
    query_body = {
        'query':{
            'bool':{
                'must':[
                    # {'wildcard':{'keys':'*'+opinion+'*'}},
                    {"match_phrase":{"keys": opinion}},
                    #{'term':{'keys':opinion}},
                    {'term':{'name':topic}},
                    {'range':{'start_ts':{'gte':start_ts}}},
                    {'range':{'end_ts':{'lte':end_ts}}}
                ]
            }
        },
        'size':1000000
    }  #没有查到uid   每次的id不一样   
    # query_body = {
    #     'query':{
    #         'match_all':{}
    #     },
    #     'size':1000000
    # }
    print 'query_body:::::;',query_body
    weibos = es.search(index=subopinion_index_name,doc_type=subopinion_index_type,body=query_body)['hits']['hits']
    #print weibo_es,subopinion_index_name,subopinion_index_type,query_body
    print len(weibos)
    #keys_list = []
    for weibo in weibos:
        print weibo['_source'].keys()
        print 'start_ts:::::::::',weibo["_source"]["start_ts"]
        print 'end_ts:::::::::::',weibo["_source"]["end_ts"]
        print 'name:::::::::::::',weibo['_source']["name"]
        print 'keys:::::::::::::',weibo["_source"]["keys"]
    #print 'keys_list:::::::',keys_list
    print 'opinion:::::',opinion
    print 'start_ts::::',start_ts
    print 'end_ts::::::',end_ts
    print 'topic:::::::',topic
    if weibos:
        # print 'weibos:::::::::::;',weibos[0]['_source']['keys']
        weibos = json.loads(weibos[0]['_source']['cluster_dump_dict'])
        for weibo in weibos.values():#jln0825
            weibo = weibo[0]
            weibo_content = {}
            weibo_content['text'] = weibo['text'] 
            weibo_content['uid'] = weibo['uid']
            weibo_content['timestamp'] = full_datetime2ts(weibo['datetime'])
            weibo_content['comment'] = weibo['comment']
            weibo_content['retweeted'] = weibo['retweeted']
            weibo_content['mid'] = weibo['id']
            try:
                user = es.get(index=profile_index_name,doc_type=profile_index_type,id=weibo_content['uid'])['_source']
                weibo_content['uname'] = user['nick_name']
                weibo_content['photo_url'] = user['photo_url']
            except:
                weibo_content['uname'] = 'unknown'
                weibo_content['photo_url'] = 'unknown'
            weibo_dict[weibo_content['mid']] = weibo_content
        results = sorted(weibo_dict.items(),key=lambda x:x[1][sort_item],reverse=True)
        #print results
        return results
    else:
        return 'no results'