示例#1
0
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 bt=_def_bt,
                 verbose=_def_verbose,
                 log=_def_log):

        gr.hier_block2.__init__(
            self,
            "gmsk_mod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        samples_per_symbol = int(samples_per_symbol)
        self._samples_per_symbol = samples_per_symbol
        self._bt = bt
        self._differential = False

        if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
            raise TypeError, (
                "samples_per_symbol must be an integer >= 2, is %r" %
                (samples_per_symbol, ))

        ntaps = 4 * samples_per_symbol  # up to 3 bits in filter at once
        sensitivity = (pi /
                       2) / samples_per_symbol  # phase change per bit = pi / 2

        # Turn it into NRZ data.
        #self.nrz = digital.bytes_to_syms()
        self.unpack = blocks.packed_to_unpacked_bb(1, gr.GR_MSB_FIRST)
        self.nrz = digital.chunks_to_symbols_bf([-1, 1], 1)

        # Form Gaussian filter
        # Generate Gaussian response (Needs to be convolved with window below).
        self.gaussian_taps = filter.firdes.gaussian(
            1,  # gain
            samples_per_symbol,  # symbol_rate
            bt,  # bandwidth * symbol time
            ntaps  # number of taps
        )

        self.sqwave = (1, ) * samples_per_symbol  # rectangular window
        self.taps = numpy.convolve(numpy.array(self.gaussian_taps),
                                   numpy.array(self.sqwave))
        self.gaussian_filter = filter.interp_fir_filter_fff(
            samples_per_symbol, self.taps)

        # FM modulation
        self.fmmod = analog.frequency_modulator_fc(sensitivity)

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()

        # Connect & Initialize base class
        self.connect(self, self.unpack, self.nrz, self.gaussian_filter,
                     self.fmmod, self)
示例#2
0
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 bt=_def_bt,
                 verbose=_def_verbose,
                 log=_def_log):

	gr.hier_block2.__init__(self, "gmsk_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        samples_per_symbol = int(samples_per_symbol)
        self._samples_per_symbol = samples_per_symbol
        self._bt = bt
        self._differential = False

        if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
            raise TypeError, ("samples_per_symbol must be an integer >= 2, is %r" % (samples_per_symbol,))

	ntaps = 4 * samples_per_symbol			# up to 3 bits in filter at once
	sensitivity = (pi / 2) / samples_per_symbol	# phase change per bit = pi / 2

	# Turn it into NRZ data.
	#self.nrz = digital.bytes_to_syms()
        self.unpack = blocks.packed_to_unpacked_bb(1, gr.GR_MSB_FIRST)
        self.nrz = digital.chunks_to_symbols_bf([-1, 1], 1)

	# Form Gaussian filter
        # Generate Gaussian response (Needs to be convolved with window below).
	self.gaussian_taps = filter.firdes.gaussian(
		1,		       # gain
		samples_per_symbol,    # symbol_rate
		bt,		       # bandwidth * symbol time
		ntaps	               # number of taps
		)

	self.sqwave = (1,) * samples_per_symbol       # rectangular window
	self.taps = numpy.convolve(numpy.array(self.gaussian_taps),numpy.array(self.sqwave))
	self.gaussian_filter = filter.interp_fir_filter_fff(samples_per_symbol, self.taps)

	# FM modulation
	self.fmmod = analog.frequency_modulator_fc(sensitivity)
		
        if verbose:
            self._print_verbage()
         
        if log:
            self._setup_logging()

	# Connect & Initialize base class
	self.connect(self, self.unpack, self.nrz, self.gaussian_filter, self.fmmod, self)
示例#3
0
    def test_002_correlation_b(self):
        for degree in range(1,11):                # Higher degrees take too long to correlate
            src = digital.glfsr_source_b(degree, False)
            b2f = digital.chunks_to_symbols_bf((-1.0,1.0), 1)
            dst = blocks.vector_sink_f()
	    del self.tb # Discard existing top block
	    self.tb = gr.top_block()
            self.tb.connect(src, b2f, dst)
            self.tb.run()
	    self.tb.disconnect_all()
            actual_result = dst.data()
            R = auto_correlate(actual_result)
            self.assertEqual(R[0], float(len(R))) # Auto-correlation peak at origin
            for i in range(len(R)-1):
                self.assertEqual(R[i+1], -1.0)    # Auto-correlation minimum everywhere else
示例#4
0
    def test_bf_002(self):
        const = [-3, -1, 1, 3]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = (-3, -1, 1, 3, 3, 1, -1, -3)

        src = blocks.vector_source_b(src_data)
        op = digital.chunks_to_symbols_bf(const)

        dst = blocks.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
示例#5
0
    def test_002_correlation_b(self):
        for degree in range(1,11):                # Higher degrees take too long to correlate
            src = digital.glfsr_source_b(degree, False)
            b2f = digital.chunks_to_symbols_bf((-1.0,1.0), 1)
            dst = gr.vector_sink_f()
	    del self.tb # Discard existing top block
	    self.tb = gr.top_block()
            self.tb.connect(src, b2f, dst)
            self.tb.run()
	    self.tb.disconnect_all()
            actual_result = dst.data()
            R = auto_correlate(actual_result)
            self.assertEqual(R[0], float(len(R))) # Auto-correlation peak at origin
            for i in range(len(R)-1):
                self.assertEqual(R[i+1], -1.0)    # Auto-correlation minimum everywhere else
    def test_bf_002(self):
        const = [-3, -1, 1, 3]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = (-3, -1, 1, 3,
                            3, 1, -1, -3)

        src = gr.vector_source_b(src_data)
        op = digital.chunks_to_symbols_bf(const)

        dst = gr.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
示例#7
0
    def __init__(self, 
                 samples_per_symbol=_def_samples_per_symbol,
                 bits_per_symbol=_def_bits_per_symbol,
                 h_numerator=_def_h_numerator,
                 h_denominator=_def_h_denominator,
                 cpm_type=_def_cpm_type,
		 bt=_def_bt,
		 symbols_per_pulse=_def_symbols_per_pulse,
                 generic_taps=_def_generic_taps,
                 verbose=_def_verbose,
                 log=_def_log):

	gr.hier_block2.__init__(self, "cpm_mod", 
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) #  Output signature

        self._samples_per_symbol = samples_per_symbol
        self._bits_per_symbol = bits_per_symbol
        self._h_numerator = h_numerator
        self._h_denominator = h_denominator
        self._cpm_type = cpm_type
        self._bt=bt
        if cpm_type == 0 or cpm_type == 2 or cpm_type == 3: # CPFSK, RC, Generic
	    self._symbols_per_pulse = symbols_per_pulse
        elif cpm_type == 1: # GMSK
	    self._symbols_per_pulse = 4
        else:
            raise TypeError, ("cpm_type must be an integer in {0,1,2,3}, is %r" % (cpm_type,))

        self._generic_taps=numpy.array(generic_taps)

        if samples_per_symbol < 2:
            raise TypeError, ("samples_per_symbol must be >= 2, is %r" % (samples_per_symbol,))

        self.nsymbols = 2**bits_per_symbol
        self.sym_alphabet = numpy.arange(-(self.nsymbols-1),self.nsymbols,2).tolist()


	self.ntaps = int(self._symbols_per_pulse * samples_per_symbol)
	sensitivity = 2 * pi * h_numerator / h_denominator / samples_per_symbol

        # Unpack Bytes into bits_per_symbol groups
        self.B2s = blocks.packed_to_unpacked_bb(bits_per_symbol,gr.GR_MSB_FIRST)
 
 
	# Turn it into symmetric PAM data.
        self.pam = digital_swig.chunks_to_symbols_bf(self.sym_alphabet,1)

        # Generate pulse (sum of taps = samples_per_symbol/2)
        if cpm_type == 0: # CPFSK
            self.taps= (1.0/self._symbols_per_pulse/2,) * self.ntaps
        elif cpm_type == 1: # GMSK
            gaussian_taps = filter.firdes.gaussian(
                1.0/2,                     # gain
                samples_per_symbol,    # symbol_rate
                bt,                    # bandwidth * symbol time
                self.ntaps                  # number of taps
                )
	    sqwave = (1,) * samples_per_symbol       # rectangular window
	    self.taps = numpy.convolve(numpy.array(gaussian_taps),numpy.array(sqwave))
        elif cpm_type == 2: # Raised Cosine
            # generalize it for arbitrary roll-off factor
            self.taps = (1-numpy.cos(2*pi*numpy.arange(0,self.ntaps)/samples_per_symbol/self._symbols_per_pulse))/(2*self._symbols_per_pulse)
        elif cpm_type == 3: # Generic CPM
            self.taps = generic_taps
        else:
            raise TypeError, ("cpm_type must be an integer in {0,1,2,3}, is %r" % (cpm_type,))

        self.filter = filter.pfb.arb_resampler_fff(samples_per_symbol, self.taps)

	# FM modulation
	self.fmmod = analog.frequency_modulator_fc(sensitivity)
		
        if verbose:
            self._print_verbage()
         
        if log:
            self._setup_logging()

	# Connect
	self.connect(self, self.B2s, self.pam, self.filter, self.fmmod, self)
示例#8
0
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 sensitivity=_def_sensitivity,
                 bt=_def_bt,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for Gaussian Frequency Shift Key (GFSK)
	modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.

        Args:
            samples_per_symbol: samples per baud >= 2 (integer)
            bt: Gaussian filter bandwidth * symbol time (float)
            verbose: Print information about modulator? (bool)
            debug: Print modualtion data to files? (bool)
	"""

	gr.hier_block2.__init__(self, "gfsk_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        samples_per_symbol = int(samples_per_symbol)
        self._samples_per_symbol = samples_per_symbol
        self._bt = bt
        self._differential = False

        if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
            raise TypeError, ("samples_per_symbol must be an integer >= 2, is %r" % (samples_per_symbol,))

	ntaps = 4 * samples_per_symbol			# up to 3 bits in filter at once
	#sensitivity = (pi / 2) / samples_per_symbol	# phase change per bit = pi / 2

	# Turn it into NRZ data.
	#self.nrz = digital.bytes_to_syms()
        self.unpack = blocks.packed_to_unpacked_bb(1, gr.GR_MSB_FIRST)
        self.nrz = digital.chunks_to_symbols_bf([-1, 1])

	# Form Gaussian filter
        # Generate Gaussian response (Needs to be convolved with window below).
	self.gaussian_taps = filter.firdes.gaussian(
		1.0,		       # gain
		samples_per_symbol,    # symbol_rate
		bt,		       # bandwidth * symbol time
		ntaps	               # number of taps
		)

	self.sqwave = (1,) * samples_per_symbol       # rectangular window
	self.taps = numpy.convolve(numpy.array(self.gaussian_taps),numpy.array(self.sqwave))
	self.gaussian_filter = filter.interp_fir_filter_fff(samples_per_symbol, self.taps)

	# FM modulation
	self.fmmod = analog.frequency_modulator_fc(sensitivity)

	# small amount of output attenuation to prevent clipping USRP sink
	self.amp = blocks.multiply_const_cc(0.999)
		
        if verbose:
            self._print_verbage()
         
        if log:
            self._setup_logging()

	# Connect & Initialize base class
	self.connect(self, self.unpack, self.nrz, self.gaussian_filter, self.fmmod, self.amp, self)
示例#9
0
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 bits_per_symbol=_def_bits_per_symbol,
                 h_numerator=_def_h_numerator,
                 h_denominator=_def_h_denominator,
                 cpm_type=_def_cpm_type,
                 bt=_def_bt,
                 symbols_per_pulse=_def_symbols_per_pulse,
                 generic_taps=_def_generic_taps,
                 verbose=_def_verbose,
                 log=_def_log):

        gr.hier_block2.__init__(
            self,
            "cpm_mod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  #  Output signature

        self._samples_per_symbol = samples_per_symbol
        self._bits_per_symbol = bits_per_symbol
        self._h_numerator = h_numerator
        self._h_denominator = h_denominator
        self._cpm_type = cpm_type
        self._bt = bt
        if cpm_type == 0 or cpm_type == 2 or cpm_type == 3:  # CPFSK, RC, Generic
            self._symbols_per_pulse = symbols_per_pulse
        elif cpm_type == 1:  # GMSK
            self._symbols_per_pulse = 4
        else:
            raise TypeError, (
                "cpm_type must be an integer in {0,1,2,3}, is %r" %
                (cpm_type, ))

        self._generic_taps = numpy.array(generic_taps)

        if samples_per_symbol < 2:
            raise TypeError, ("samples_per_symbol must be >= 2, is %r" %
                              (samples_per_symbol, ))

        self.nsymbols = 2**bits_per_symbol
        self.sym_alphabet = numpy.arange(-(self.nsymbols - 1), self.nsymbols,
                                         2).tolist()

        self.ntaps = int(self._symbols_per_pulse * samples_per_symbol)
        sensitivity = 2 * pi * h_numerator / h_denominator / samples_per_symbol

        # Unpack Bytes into bits_per_symbol groups
        self.B2s = blocks.packed_to_unpacked_bb(bits_per_symbol,
                                                gr.GR_MSB_FIRST)

        # Turn it into symmetric PAM data.
        self.pam = digital_swig.chunks_to_symbols_bf(self.sym_alphabet, 1)

        # Generate pulse (sum of taps = samples_per_symbol/2)
        if cpm_type == 0:  # CPFSK
            self.taps = (1.0 / self._symbols_per_pulse / 2, ) * self.ntaps
        elif cpm_type == 1:  # GMSK
            gaussian_taps = filter.firdes.gaussian(
                1.0 / 2,  # gain
                samples_per_symbol,  # symbol_rate
                bt,  # bandwidth * symbol time
                self.ntaps  # number of taps
            )
            sqwave = (1, ) * samples_per_symbol  # rectangular window
            self.taps = numpy.convolve(numpy.array(gaussian_taps),
                                       numpy.array(sqwave))
        elif cpm_type == 2:  # Raised Cosine
            # generalize it for arbitrary roll-off factor
            self.taps = (1 - numpy.cos(
                2 * pi * numpy.arange(0, self.ntaps) / samples_per_symbol /
                self._symbols_per_pulse)) / (2 * self._symbols_per_pulse)
        elif cpm_type == 3:  # Generic CPM
            self.taps = generic_taps
        else:
            raise TypeError, (
                "cpm_type must be an integer in {0,1,2,3}, is %r" %
                (cpm_type, ))

        self.filter = filter.pfb.arb_resampler_fff(samples_per_symbol,
                                                   self.taps)

        # FM modulation
        self.fmmod = analog.frequency_modulator_fc(sensitivity)

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()

        # Connect
        self.connect(self, self.B2s, self.pam, self.filter, self.fmmod, self)