示例#1
0
 def test_select(self):
     # check indexing with a tuple of arrays and with 1-level dimensions:
     dim1=Dim(['dim'],'dim1')
     dim2=Dim([1,2],'dim2')
     dim3=Dim([3,4,5],'dim3')
     dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
     self.assertEquals(dat.select(dim2=dat['dim2']>1,
                                  dim3=dat['dim3']>3).shape,(1,1,2))
示例#2
0
 def test_select(self):
     # check indexing with a tuple of arrays and with 1-level dimensions:
     dim1=Dim(['dim'],'dim1')
     dim2=Dim([1,2],'dim2')
     dim3=Dim([3,4,5],'dim3')
     dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
     self.assertEquals(dat.select(dim2=dat['dim2']>1,
                                  dim3=dat['dim3']>3).shape,(1,1,2))
示例#3
0
 def test_find(self):
     # check indexing with a tuple of arrays and with 1-level dimensions:
     dim1=Dim(['dim'],'dim1')
     dim2=Dim([1,2],'dim2')
     dim3=Dim([3,4,5],'dim3')
     dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
     indx = dat.find(dim2=dat['dim2']>1,dim3=dat['dim3']>3)
     assert_array_equal(dat.select(dim2=dat['dim2']>1,dim3=dat['dim3']>3),
                         dat[indx])
示例#4
0
 def test_find(self):
     # check indexing with a tuple of arrays and with 1-level dimensions:
     dim1=Dim(['dim'],'dim1')
     dim2=Dim([1,2],'dim2')
     dim3=Dim([3,4,5],'dim3')
     dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
     indx = dat.find(dim2=dat['dim2']>1,dim3=dat['dim3']>3)
     assert_array_equal(dat.select(dim2=dat['dim2']>1,dim3=dat['dim3']>3),
                         dat[indx])
示例#5
0
 def test_get_axis(self):
     dat = DimArray(np.random.rand(5,10,3),
                    dims=[Dim(range(5),name='one'),
                          Dim(range(10),name='two'),
                          Dim(range(3),name='three')],test='tst')
     self.assertEqual(dat.get_axis(0),0)
     self.assertEqual(dat.get_axis(1),1)
     self.assertEqual(dat.get_axis(2),2)
     self.assertEqual(dat.get_axis('one'),0)
     self.assertEqual(dat.get_axis('two'),1)
     self.assertEqual(dat.get_axis('three'),2)
示例#6
0
 def test_reshape(self):
     # make ndarray an Dimaray with identical data
     arr = np.random.rand(5,12,3,1)
     dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                              Dim(range(12),name='two'),
                              Dim(range(3),name='three'),
                              Dim(range(1),name='four')],test='tst')
     newshapes = [(5,2,2,3,3),(2,3,5,3,2),(15,12),(6,2,15,1,1,1,1,1,1,1),
                  180,(1,1,1,180,1,1,1)]
     for newshape in newshapes:
         assert_array_equal(arr.reshape(newshape),dat.reshape(newshape))
         assert_array_equal(np.reshape(arr,newshape),
                            np.reshape(dat,newshape))
示例#7
0
 def test_reshape(self):
     # make ndarray an Dimaray with identical data
     arr = np.random.rand(5,12,3,1)
     dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                              Dim(range(12),name='two'),
                              Dim(range(3),name='three'),
                              Dim(range(1),name='four')],test='tst')
     newshapes = [(5,2,2,3,3),(2,3,5,3,2),(15,12),(6,2,15,1,1,1,1,1,1,1),
                  180,(1,1,1,180,1,1,1)]
     for newshape in newshapes:
         assert_array_equal(arr.reshape(newshape),dat.reshape(newshape))
         assert_array_equal(np.reshape(arr,newshape),
                            np.reshape(dat,newshape))
示例#8
0
def test_ncio():
    a = DimArray([1, 2], dims='xx0')
    b = DimArray([3, 4, 5], dims='xx1')
    fname = os.path.join(testdata, "test.nc")
    a.write_nc(fname, "a", mode='w')
    b.write_nc(fname, "b", mode='a')
    try:
        b.write_nc(fname.replace('.nc', 'netcdf3.nc'),
                   "b",
                   mode='w',
                   format='NETCDF3_CLASSIC')
    except Exception, msg:
        warn(
            "writing as NETCDF3_CLASSIC failed (known bug on 64bits systems): {msg}"
            .format(msg=repr(msg)))
示例#9
0
 def __setattr__(self, name, value):
     # ensure that tdim is a valid dimension name:
     if name == 'tdim':
         if not(value in self.dim_names):
             raise ValueError(
                 'Provided time dimension name (tdim) is invalid!\n'+
                 'Provided value: '+ str(value)+'\nAvailable dimensions: '+
                 str(self.dim_names))
     # ensure that sample rate is a postive float:
     elif name == 'samplerate':
         value = float(value)
         if value <= 0:
             raise ValueError(
                 'Samplerate must be positive! Provided value: '+
                 str(value))
     DimArray.__setattr__(self,name,value)
示例#10
0
 def __setattr__(self, name, value):
     # ensure that tdim is a valid dimension name:
     if name == 'tdim':
         if not(value in self.dim_names):
             raise ValueError(
                 'Provided time dimension name (tdim) is invalid!\n'+
                 'Provided value: '+ str(value)+'\nAvailable dimensions: '+
                 str(self.dim_names))
     # ensure that sample rate is a postive float:
     elif name == 'samplerate':
         value = float(value)
         if value <= 0:
             raise ValueError(
                 'Samplerate must be positive! Provided value: '+
                 str(value))
     DimArray.__setattr__(self,name,value)
示例#11
0
 def test_resize(self):
     # make ndarray an Dimaray with identical data
     arr = np.random.rand(5,12,3,1)
     dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                              Dim(range(12),name='two'),
                              Dim(range(3),name='three'),
                              Dim(range(1),name='four')],test='tst')
     self.assertRaises(NotImplementedError,dat.resize,(5,2,2,3,3))
示例#12
0
 def test_add_dim(self):
     # make ndarray an Dimaray with identical data        
     arr = np.random.rand(5)
     dat = DimArray(arr,dims=[Dim(range(5),name='one')])
     # make new dim to add
     d = Dim(range(10),name='replicate')
     # add it to the dat
     ndat = dat.add_dim(d)
     # test that it worked
     # verify shape
     self.assertEquals(len(ndat.shape),len(dat.shape)+1)
     self.assertEquals(ndat.shape[0],10)
     self.assertEquals(ndat.shape[1],5)
     # verify contents (a couple random spots)
     assert_array_equal(ndat[4],dat)
     assert_array_equal(ndat[7],dat)
     assert_array_equal(ndat.dims[0],d)
     assert_array_equal(ndat.dims[1],dat.dims[0])
示例#13
0
 def test_add_dim(self):
     # make ndarray an Dimaray with identical data        
     arr = np.random.rand(5)
     dat = DimArray(arr,dims=[Dim(range(5),name='one')])
     # make new dim to add
     d = Dim(range(10),name='replicate')
     # add it to the dat
     ndat = dat.add_dim(d)
     # test that it worked
     # verify shape
     self.assertEquals(len(ndat.shape),len(dat.shape)+1)
     self.assertEquals(ndat.shape[0],10)
     self.assertEquals(ndat.shape[1],5)
     # verify contents (a couple random spots)
     assert_array_equal(ndat[4],dat)
     assert_array_equal(ndat[7],dat)
     assert_array_equal(ndat.dims[0],d)
     assert_array_equal(ndat.dims[1],dat.dims[0])
示例#14
0
 def test_extend(self):
     """Test the extend method"""
     # make ndarrays and DimArrays with identical data
     arr1 = np.arange(256).reshape((4,4,4,4))
     dat1 = DimArray(arr1,dims=[Dim(np.arange(100,500,100),name='one'),
                                Dim(np.arange(30,70,10),name='two'),
                                Dim(np.arange(4),name='three'),
                                Dim(np.arange(1000,1200,50),name='four')],
                     test='tst')
     arr2 = np.arange(256,512).reshape((4,4,4,4))
     dat2 = DimArray(arr2,dims=[Dim(np.arange(100,500,100),name='one'),
                                Dim(np.arange(30,70,10),name='two'),
                                Dim(np.arange(4,8),name='three'),
                                Dim(np.arange(1000,1200,50),name='four')],
                     test='tst')
     # extend
     dat1dat2 = dat1.extend(dat2,'three')
     arr1arr2 = np.concatenate([arr1,arr2],2)
     assert_array_equal(dat1dat2,arr1arr2)
示例#15
0
def test_ncio(tmpdir): 

    fname = tmpdir.join("test.nc").strpath # have test.nc in some temporary directory

    a = DimArray([1,2], dims='xx0')
    b = DimArray([3,4,5], dims='xx1')
    a.write_nc(fname,"a", mode='w')
    b.write_nc(fname,"b", mode='a')
    try:
        b.write_nc(fname.replace('.nc','netcdf3.nc'),"b", mode='w', format='NETCDF3_CLASSIC')
    except Exception, msg:
        warn("writing as NETCDF3_CLASSIC failed (known bug on 64bits systems): {msg}".format(msg=repr(msg)))
示例#16
0
 def test_extend(self):
     """Test the extend method"""
     # make ndarrays and DimArrays with identical data
     arr1 = np.arange(256).reshape((4,4,4,4))
     dat1 = DimArray(arr1,dims=[Dim(np.arange(100,500,100),name='one'),
                                Dim(np.arange(30,70,10),name='two'),
                                Dim(np.arange(4),name='three'),
                                Dim(np.arange(1000,1200,50),name='four')],
                     test='tst')
     arr2 = np.arange(256,512).reshape((4,4,4,4))
     dat2 = DimArray(arr2,dims=[Dim(np.arange(100,500,100),name='one'),
                                Dim(np.arange(30,70,10),name='two'),
                                Dim(np.arange(4,8),name='three'),
                                Dim(np.arange(1000,1200,50),name='four')],
                     test='tst')
     # extend
     dat1dat2 = dat1.extend(dat2,'three')
     arr1arr2 = np.concatenate([arr1,arr2],2)
     assert_array_equal(dat1dat2,arr1arr2)
示例#17
0
    def __new__(cls, data, tdim, samplerate, *args, **kwargs):
        # make new DimArray with timeseries attributes
        ts = DimArray(data, *args, **kwargs)
        # ensure that tdim is a valid dimension name:
        if not (tdim in ts.dim_names):
            raise ValueError(
                'Provided time dimension name (tdim) is invalid!\n' +
                'Provided value: ' + str(tdim) + '\nAvailable dimensions: ' +
                str(ts.dim_names))
        ts.tdim = tdim
        # ensure that sample rate is a float:
        samplerate = float(samplerate)
        # ensure that sample rate is postive:
        if samplerate <= 0:
            raise ValueError('Samplerate must be positive! Provided value: ' +
                             str(samplerate))
        ts.samplerate = samplerate

        # convert to TimeSeries and return:
        return ts.view(cls)
示例#18
0
 def __new__(cls, data, tdim, samplerate, *args, **kwargs):
     # make new DimArray with timeseries attributes
     ts = DimArray(data, *args, **kwargs)
     # ensure that tdim is a valid dimension name:
     if not(tdim in ts.dim_names):
         raise ValueError(
             'Provided time dimension name (tdim) is invalid!\n'+
             'Provided value: '+ str(tdim)+'\nAvailable dimensions: '+
             str(ts.dim_names))
     ts.tdim = tdim
     # ensure that sample rate is a float:
     samplerate = float(samplerate)
     # ensure that sample rate is postive:
     if samplerate <= 0:
         raise ValueError(
             'Samplerate must be positive! Provided value: '+
             str(samplerate))
     ts.samplerate = samplerate
     
     # convert to TimeSeries and return:
     return ts.view(cls)
示例#19
0
def test_format(dim_array, tmpdir): 

    fname = tmpdir.join("test.nc").strpath # have test.nc in some temporary directory

    a = DimArray([1,2], dims=['xx0'])
    b = DimArray([3.,4.,5.], dims=['xx1'])
    a.write_nc(fname,"a", mode='w')
    b.write_nc(fname,"b", mode='a')

    # b.write_nc(fname.replace('.nc','netcdf3.nc'),name="b", mode='w', format='NETCDF3_CLASSIC')
    ds = da.Dataset([('a',a),('b',b)])
    
    # NETCDF3_CLASSIC
    ds.write_nc(fname.replace('.nc','netcdf3.nc'), mode='w', format='NETCDF3_CLASSIC')
    dscheck = da.read_nc(fname.replace('.nc','netcdf3.nc'))
    assert_equal_datasets(ds, dscheck)

    # # NETCDF3_64bit
    # ds.write_nc(fname.replace('.nc','netcdf3_64b.nc'), mode='w', format='NETCDF3_64BIT')
    # dscheck = da.read_nc(fname.replace('.nc','netcdf3_64b.nc'))
    # assert_equal_datasets(ds, dscheck)

    data = read_nc(fname)
    assert(np.all(data['a'] == a))
    assert(np.all(data['b'] == b))
    ds = da.Dataset(a=a, b=b)
    for k in ds:
        assert(np.all(ds[k] == data[k]))
示例#20
0
    def test_ufuncs(self):
        """Test the numpy u-functions"""
        # make ndarray an Dimaray with identical data
        arr = np.random.rand(5)
        dat = DimArray(arr,dims=[Dim(range(5),name='one')],
                       test='tst')

        x = np.ones(10) * dat[[0]]
        self.assertTrue(isinstance(x,np.ndarray))

        x = np.ones(1) * dat[[0]]
        self.assertTrue(isinstance(x,DimArray))

        x = 22 * dat
        self.assertTrue(isinstance(x,DimArray))
        assert_array_equal(x,arr*22)
示例#21
0
 def test_get_axis(self):
     dat = DimArray(np.random.rand(5,10,3),
                    dims=[Dim(range(5),name='one'),
                          Dim(range(10),name='two'),
                          Dim(range(3),name='three')],test='tst')
     self.assertEqual(dat.get_axis(0),0)
     self.assertEqual(dat.get_axis(1),1)
     self.assertEqual(dat.get_axis(2),2)
     self.assertEqual(dat.get_axis('one'),0)
     self.assertEqual(dat.get_axis('two'),1)
     self.assertEqual(dat.get_axis('three'),2)
示例#22
0
    def test_pickle(self):
        # make sure we can pickle this thing
        dat = DimArray(np.random.rand(4,3))

        # dump to string
        pstr = pickle.dumps(dat)

        # load to new variable
        dat2 = pickle.loads(pstr)

        # make sure data same
        assert_array_equal(dat,dat2)

        # make sure has attr and it's correct
        self.assertTrue(hasattr(dat2,'_attrs'))
        self.assertTrue(hasattr(dat2,'dims'))
        assert_array_equal(dat.dims[0],dat2.dims[0])
        assert_array_equal(dat.dims[1],dat2.dims[1])

        # make sure has required attr
        self.assertTrue(hasattr(dat2,'_required_attrs'))
        self.assertEquals(dat._required_attrs,dat2._required_attrs)
示例#23
0
 def test_newaxis(self):
     # make ndarray an Dimaray with identical data        
     arr = np.random.rand(5,12,3,1)
     dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                              Dim(range(12),name='two'),
                              Dim(range(3),name='three'),
                              Dim(range(1),name='four')],test='tst')
     # add a new axis at beginning
     d0 = dat[np.newaxis,:]
     self.assertEquals(d0.dim_names[0],'newaxis_0')
     self.assertEquals(d0.dim_names[-1],'four')
     self.assertEquals(len(d0.shape),len(arr.shape)+1)
     # add a new axis at end
     d0 = dat[:,:,:,:,np.newaxis]
     self.assertEquals(d0.dim_names[-1],'newaxis_4')
     self.assertEquals(d0.dim_names[0],'one')
     self.assertEquals(len(d0.shape),len(arr.shape)+1)
     # add two axes at once
     d0 = dat[np.newaxis,:,:,:,:,np.newaxis]
     self.assertEquals(d0.dim_names[-1],'newaxis_5')
     self.assertEquals(d0.dim_names[0],'newaxis_0')
     self.assertEquals(len(d0.shape),len(arr.shape)+2)
     # make sure the attribute is still there
     d0.test = 'tst'
示例#24
0
    def test_new(self):
        # should raise Error if dims contains non-Dim instances:
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims = np.arange(4))
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[Dim(range(5),name='freqs',unit='Hz'),
                                AttrArray(range(10),name='time',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[AttrArray(range(5),name='freqs',unit='Hz'),
                                Dim(range(10),name='time',unit='sec')])
 
        # should throw Error if dims do not match data shape:
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[Dim(range(10),name='freqs',unit='Hz'),
                                Dim(range(5),name='time',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[Dim(range(5),name='freqs',unit='Hz')])

        # should throw Error if 2 dims have the same name:
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim1',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,3,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(3),name='dim2',unit='Hz'),
                                Dim(range(5),name='dim1',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,3,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(3),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim1',unit='sec')])

        # should throw Error if a dim name is not a valid identifier:
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim 2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim 1',unit='Hz'),
                                Dim(range(5),name='dim2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim 1',unit='Hz'),
                                Dim(range(5),name='dim 2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim$2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='$dim1',unit='Hz'),
                                Dim(range(5),name='dim2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='1dim1',unit='Hz'),
                                Dim(range(5),name='dim:2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='',unit='Hz'),
                                Dim(range(5),name='dim2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='',unit='Hz'),
                                Dim(range(5),name='',unit='sec')])
        
        # this is a proper initialization:
        dat = DimArray(np.random.rand(5,10),
                       dims=[Dim(range(5),name='freqs',unit='Hz'),
                             Dim(range(10),name='time',unit='sec')])
        # should raise Attribute Error if dims is removed:
        self.assertRaises(AttributeError,dat.__setattr__,'dims',None)
        # ensure dim_names attribute is set properly:
        self.assertEquals(dat.dim_names,['freqs','time'])
        # ensure proper shape
        self.assertEquals(dat.shape,(5,10))
        # ensure dims have proper lengths:
        self.assertEquals(len(dat.dims[0]),5)
        self.assertEquals(len(dat.dims[1]),10)
        # ensure that dims attributes are copied properly:
        self.assertEquals(dat.dims[0].unit,'Hz')
        self.assertEquals(dat.dims[1].unit,'sec')
        # check that dims values are preserved:
        self.assertEquals(dat.dims[0][-1],4)
        self.assertEquals(dat.dims[1][-1],9)
        
        dat = DimArray(np.random.rand(2,4,5),
                       dims=[Dim(range(2),name='dim1',unit='Hz'),
                             Dim(range(4),name='dim2',bla='bla'),
                             Dim(range(5),name='dim3',attr1='attr1',
                                 attr2='attr2')])
        # ensure dim_names attribute is set properly:
        self.assertEquals(dat.dim_names,['dim1','dim2','dim3'])
        # ensure proper shape
        self.assertEquals(dat.shape,(2,4,5))
        # ensure dims have proper lengths:
        self.assertEquals(len(dat.dims[0]),2)
        self.assertEquals(len(dat.dims[1]),4)
        self.assertEquals(len(dat.dims[2]),5)
        # ensure that dims attributes are copied properly:
        self.assertEquals(dat.dims[0].unit,'Hz')
        self.assertEquals(dat.dims[1].bla,'bla')
        self.assertEquals(dat.dims[2].attr1,'attr1')
        self.assertEquals(dat.dims[2].attr2,'attr2')
        # check that dims values are preserved:
        self.assertEquals(dat.dims[0][-1],1)
        self.assertEquals(dat.dims[1][-1],3)
        self.assertEquals(dat.dims[2][-1],4)

        # check filling in of default dims if left out
        dat = DimArray(np.random.rand(4,3))
        self.assertEquals(dat.dim_names, ['dim1','dim2'])
        assert_array_equal(dat['dim1'],np.arange(dat.shape[0]))
        assert_array_equal(dat['dim2'],np.arange(dat.shape[1]))
示例#25
0
    def test_funcs(self):
        """Test the numpy functions"""
        # make ndarray an Dimaray with identical data
        arr = np.random.rand(5,12,3,1)
        dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                                 Dim(range(12),name='two'),
                                 Dim(range(3),name='three'),
                                 Dim(range(1),name='four')],test='tst')
        
        # these are functions that take an axis argument:
        funcs = [np.mean,np.all,np.any,np.argmax,np.argmin,np.argsort,
                 np.cumprod,np.cumsum,np.max,np.mean,np.min,np.prod,
                 np.ptp,np.std,np.sum,np.var]
        
        # The axes for the ndarray:
        axes_arr = [None,0,1,2,3,0,1,2,3]
        # The axes for the DimArray (we want to test indexing them by
        # number and name):
        axes_dat = [None,0,1,2,3,'one','two','three','four']

        # loop through the functions and axes:
        for func in funcs:
            for a in range(len(axes_arr)):
                # apply the function to the ndarray and the DimArray
                arr_func = func(arr,axis=axes_arr[a])
                dat_func = func(dat,axis=axes_dat[a])
                # make sure they are the same:
                assert_array_equal(arr_func,dat_func)
                if not(axes_dat[a] is None):
                    # ensure we still have a DimArray
                    self.assertTrue(isinstance(dat_func,DimArray))
                    # ensure that the attributes are preserved
                    self.assertEquals(dat_func.test,'tst')
                    
        # same tests as above but this time calling the DimArray
        # methods directly (this test is necessary because it is in
        # principle possible for the numpy function to work and the
        # DimArray method not to work (or vice versa):
        for a in range(len(axes_arr)):
            assert_array_equal(arr.all(axes_arr[a]),
                               dat.all(axes_dat[a]))
            assert_array_equal(arr.any(axes_arr[a]),
                               dat.any(axes_dat[a]))
            assert_array_equal(arr.argmax(axes_arr[a]),
                               dat.argmax(axes_dat[a]))
            assert_array_equal(arr.argmin(axes_arr[a]),
                               dat.argmin(axes_dat[a]))
            assert_array_equal(arr.argsort(axes_arr[a]),
                               dat.argsort(axes_dat[a]))
            assert_array_equal(arr.cumprod(axes_arr[a]),
                               dat.cumprod(axes_dat[a]))
            assert_array_equal(arr.cumsum(axes_arr[a]),
                               dat.cumsum(axes_dat[a]))
            assert_array_equal(arr.max(axes_arr[a]),
                               dat.max(axes_dat[a]))
            assert_array_equal(arr.mean(axes_arr[a]),
                               dat.mean(axes_dat[a]))
            assert_array_equal(arr.min(axes_arr[a]),
                               dat.min(axes_dat[a]))
            assert_array_equal(arr.prod(axes_arr[a]),
                               dat.prod(axes_dat[a]))
            assert_array_equal(arr.ptp(axes_arr[a]),
                               dat.ptp(axes_dat[a]))
            assert_array_equal(arr.std(axes_arr[a]),
                               dat.std(axes_dat[a]))
            assert_array_equal(arr.sum(axes_arr[a]),
                               dat.sum(axes_dat[a]))
            assert_array_equal(arr.var(axes_arr[a]),
                               dat.var(axes_dat[a]))
            if not(axes_dat[a] is None):
                self.assertTrue(isinstance(dat.all(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.any(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argmax(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argmin(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argsort(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.cumprod(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.cumsum(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.max(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.mean(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.min(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.prod(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.ptp(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.std(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.sum(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.var(axes_arr[a]),DimArray))
                
                self.assertEquals(dat.all(axes_arr[a]).test,'tst')
                self.assertEquals(dat.any(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argmax(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argmin(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argsort(axes_arr[a]).test,'tst')
                self.assertEquals(dat.cumprod(axes_arr[a]).test,'tst')
                self.assertEquals(dat.cumsum(axes_arr[a]).test,'tst')
                self.assertEquals(dat.max(axes_arr[a]).test,'tst')
                self.assertEquals(dat.mean(axes_arr[a]).test,'tst')
                self.assertEquals(dat.min(axes_arr[a]).test,'tst')
                self.assertEquals(dat.prod(axes_arr[a]).test,'tst')
                self.assertEquals(dat.ptp(axes_arr[a]).test,'tst')
                self.assertEquals(dat.std(axes_arr[a]).test,'tst')
                self.assertEquals(dat.sum(axes_arr[a]).test,'tst')
                self.assertEquals(dat.var(axes_arr[a]).test,'tst')
                
        # test functions that require function specific input:
        for a in range(len(axes_arr)):
            if axes_arr[a] is None:
                length = len(arr)
            else:
                length = np.shape(arr)[axes_arr[a]]
            cond = np.random.random(length)>0.5
            # calling the compress method directly:
            arr_func = arr.compress(cond,axis=axes_arr[a])
            dat_func = dat.compress(cond,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,DimArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy compress function:
            arr_func = np.compress(cond,arr,axis=axes_arr[a])
            dat_func = np.compress(cond,dat,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,DimArray))
                self.assertEquals(dat_func.test,'tst')            

            # the below tests should not run with axis==None:
            if axes_arr[a] is None:
                continue
            
            reps = np.random.random_integers(low=1, high=10, size=length)
            # calling the repeat method directly:
            arr_func = arr.repeat(reps,axis=axes_arr[a])
            dat_func = dat.repeat(reps,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy repeat function:
            arr_func = np.repeat(arr,reps,axis=axes_arr[a])
            dat_func = np.repeat(dat,reps,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')

            # skip the last dimension for this test for
            # convenience (the last dimension only has 1 level):
            if a >= 3:
                continue
            indcs = np.arange(len(arr.shape))
            # calling the take method directly (squeeze, to get rid of
            # the last dimension):
            arr_func = arr.squeeze().take(indcs,axis=axes_arr[a])
            dat_func = dat.squeeze().take(indcs,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a]:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy take function directly (squeeze, to get rid of
            # the last dimension):
            arr_func = np.take(arr.squeeze(),indcs,axis=axes_arr[a])
            dat_func = np.take(dat.squeeze(),indcs,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a]:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')

        # This should work with numpy 1.2 but doesn't
        # with 1.1.1 or below (therfore commented out for now):
        # arr_func = arr.clip(0.4,0.6)
        # dat_func = dat.clip(0.4,0.6)
        # assert_array_equal(arr_func,dat_func)
        #self.assertTrue(isinstance(dat_func,DimArray))
        #self.assertEquals(dat_func.test,'tst')
        #arr_func = np.clip(arr,0.4,0.6)
        #dat_func = np.clip(dat,0.4,0.6)
        #assert_array_equal(arr_func,dat_func)
        #self.assertTrue(isinstance(dat_func,DimArray))
        #self.assertEquals(dat_func.test,'tst')

        # other functions that don't necessarily take return a
        # DimArray:
        funcs = [np.diagonal,np.nonzero,np.ravel,np.squeeze,
                 np.sort,np.trace,np.transpose]
        for func in funcs:
            arr_func = func(arr)
            dat_func = func(dat)
            assert_array_equal(arr_func,dat_func)

        # same tests as above, but calling the methods directly:
        assert_array_equal(arr.diagonal(),dat.diagonal())
        assert_array_equal(arr.nonzero(),dat.nonzero())
        assert_array_equal(arr.ravel(),dat.ravel())
        assert_array_equal(arr.squeeze(),dat.squeeze())
        assert_array_equal(arr.sort(),dat.sort())
        assert_array_equal(arr.trace(),dat.trace())
        assert_array_equal(arr.transpose(),dat.transpose())
        # there is no numpy.flatten() function, so we only call the
        # method directly:
        assert_array_equal(arr.flatten(),dat.flatten())
        
        assert_array_equal(arr.swapaxes(0,1),dat.swapaxes(0,1))
        self.assertTrue(isinstance(dat.swapaxes(0,1),DimArray))
        self.assertEquals(dat.swapaxes(0,1).test,'tst')
        assert_array_equal(arr.swapaxes(0,1),dat.swapaxes('one','two'))
        self.assertTrue(isinstance(dat.swapaxes('one','two'),DimArray))
        self.assertEquals(dat.swapaxes('one','two').test,'tst')
        assert_array_equal(arr.swapaxes(1,3),dat.swapaxes(1,3))
        self.assertTrue(isinstance(dat.swapaxes(1,3),DimArray))
        self.assertEquals(dat.swapaxes(1,3).test,'tst')
        assert_array_equal(arr.swapaxes(1,3),dat.swapaxes('two','four'))
        self.assertTrue(isinstance(dat.swapaxes('two','four'),DimArray))
        self.assertEquals(dat.swapaxes('two','four').test,'tst')
示例#26
0
    def test_make_bins(self):
        """Test the make_bins method"""
        # make ndarray and DimArray with identical data
        arr = np.arange(256).reshape((4,4,4,4))
        dat = DimArray(arr,dims=[Dim(np.arange(100,500,100),name='one'),
                                 Dim(np.arange(30,70,10),name='two'),
                                 Dim(np.arange(4),name='three'),
                                 Dim(np.arange(1000,1200,50),name='four')],
                       test='tst')
        
        # test making bins on all dimensions:
        test1a = dat.make_bins('one',2,np.mean)
        assert_array_equal(test1a.dims[0],np.array([150,350]))
        test1b = dat.make_bins(0,2,np.mean,bin_labels='sequential')
        assert_array_equal(test1b.dims[0],np.array([0,1]))
        assert_array_equal(test1a,test1b)
        test2a = dat.make_bins('two',2,np.mean)
        assert_array_equal(test2a.dims[1],np.array([35,55]))
        test2b = dat.make_bins(1,2,np.mean,bin_labels=['a','b'])
        assert_array_equal(test2b.dims[1],np.array(['a','b']))
        assert_array_equal(test2a,test2b)
        test3a = dat.make_bins('three',2,np.mean,bin_labels='function')
        assert_array_equal(test3a.dims[2],np.array([0.5,2.5]))
        test3b = dat.make_bins(2,2,np.mean)
        assert_array_equal(test3b.dims[2],np.array([0.5,2.5]))
        assert_array_equal(test3a,test3b)
        test4a = dat.make_bins('four',2,np.mean)
        assert_array_equal(test4a.dims[3],np.array([1025,1125]))
        test4b = dat.make_bins(3,2,np.mean)
        assert_array_equal(test4b.dims[3],np.array([1025,1125]))
        assert_array_equal(test4a,test4b)
        # test specifiying bins:
        test4c = dat.make_bins('four',[[1000,1100],[1100,2000]],np.mean)
        test4d = dat.make_bins(3,[[1000,1100],[1100,2000]],np.mean)
        assert_array_equal(test4c,test4d)
        assert_array_equal(test4a,test4d)

        split = np.split
        # compare output to reproduced output for ndarray:
        test1c = np.array(split(arr,2,axis=0)).mean(1)
        assert_array_equal(test1a,test1c)
        test2c = np.array(split(arr,2,axis=1)).mean(2).transpose([1,0,2,3])
        assert_array_equal(test2a,test2c)
        test3c = np.array(split(arr,2,axis=2)).mean(3).transpose([1,2,0,3])
        assert_array_equal(test3a,test3c)
        test4e = np.array(split(arr,2,axis=3)).mean(4).transpose([1,2,3,0])
        assert_array_equal(test4a,test4e)

        # compare sequential applications of make_bins to desired output:
        test12a = test1a.make_bins('two',2,np.mean)
        assert_array_equal(test1a.dims[0],test12a.dims[0])
        assert_array_equal(test2a.dims[1],test12a.dims[1])
        test21a = test2a.make_bins('one',2,np.mean)
        assert_array_equal(test1a.dims[0],test21a.dims[0])
        assert_array_equal(test2a.dims[1],test21a.dims[1])
        assert_array_equal(test12a,test21a)
        test12b = test1a.make_bins(1,2,np.mean)
        assert_array_equal(test1a.dims[0],test12b.dims[0])
        assert_array_equal(test2a.dims[1],test12b.dims[1])
        test21b = test2a.make_bins(0,2,np.mean)
        assert_array_equal(test1a.dims[0],test21b.dims[0])
        assert_array_equal(test2a.dims[1],test21b.dims[1])
        assert_array_equal(test12b,test21b)

        # check that attributes are preserved:
        for a in dat._attrs:
            if a == 'dims': continue
            self.assertEqual(dat.__getattribute__(a),
                             test1a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test1b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test2a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test2b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test3a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test3b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4d.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test12a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test12b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test21a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test21b.__getattribute__(a))
        for d,dn in enumerate(dat.dim_names):
            self.assertEquals(test1a.dim_names[d],dn)
            self.assertEquals(test1b.dim_names[d],dn)
            self.assertEquals(test2a.dim_names[d],dn)
            self.assertEquals(test2b.dim_names[d],dn)
            self.assertEquals(test3a.dim_names[d],dn)
            self.assertEquals(test3b.dim_names[d],dn)
            self.assertEquals(test4a.dim_names[d],dn)
            self.assertEquals(test4b.dim_names[d],dn)
            self.assertEquals(test12a.dim_names[d],dn)
            self.assertEquals(test12b.dim_names[d],dn)
            self.assertEquals(test21a.dim_names[d],dn)
            self.assertEquals(test21b.dim_names[d],dn)

        # test unequal bins:
        arr = np.arange(256).reshape((4,16,4))
        dat = DimArray(arr,dims=[Dim(np.arange(4),name='one'),
                                 Dim(np.arange(16),name='two'),
                                 Dim(np.arange(4),name='three')],test='tst')
        
        self.assertRaises(ValueError,dat.make_bins,'two',3,np.mean)
        test5a = dat.make_bins('two',3,np.mean,bin_labels=['1st','2nd','3rd'],
                               error_on_nonexact=False)
        test5b = dat.make_bins(1,[[0,6,'1st'],[6,11,'2nd'],[11,16,'3rd']],
                               np.mean)
        assert_array_equal(test5a,test5b)
        assert_array_equal(test5a.dims[1],np.array(['1st','2nd','3rd']))
        assert_array_equal(test5a.dims[1],test5b.dims[1])
        # check that attributes are preserved:
        for a in dat._attrs:
            if a == 'dims': continue
            self.assertEqual(dat.__getattribute__(a),
                             test5a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test5b.__getattribute__(a))
        for d,dn in enumerate(dat.dim_names):
            self.assertEquals(test5a.dim_names[d],dn)
            self.assertEquals(test5b.dim_names[d],dn)
示例#27
0
    def test_extend(self):
        """Test the extend method"""
        # make ndarrays and DimArrays with identical data
        arr1 = np.arange(256).reshape((4,4,4,4))
        dat1 = DimArray(arr1,dims=[Dim(np.arange(100,500,100),name='one'),
                                   Dim(np.arange(30,70,10),name='two'),
                                   Dim(np.arange(4),name='three'),
                                   Dim(np.arange(1000,1200,50),name='four')],
                        test='tst')
        arr2 = np.arange(256,512).reshape((4,4,4,4))
        dat2 = DimArray(arr2,dims=[Dim(np.arange(100,500,100),name='one'),
                                   Dim(np.arange(30,70,10),name='two'),
                                   Dim(np.arange(4,8),name='three'),
                                   Dim(np.arange(1000,1200,50),name='four')],
                        test='tst')
        
        # extend with string label for axis
        dat1dat2 = dat1.extend(dat2,'three')
        arr1arr2 = np.concatenate([arr1,arr2],2)
        assert_array_equal(dat1dat2,arr1arr2)
        
        # extend with int label for axis
        dat1dat2 = dat1.extend(dat2,2)
        arr1arr2 = np.concatenate([arr1,arr2],2)
        assert_array_equal(dat1dat2,arr1arr2)

        # now the same again for the case when not all dimensions are identical in size:
        # make ndarrays and DimArrays with identical data
        arr1 = np.arange(256).reshape((8,2,16,1))
        dat1 = DimArray(arr1,dims=[Dim(np.arange(100,500,50),name='one'),
                                   Dim(np.arange(30,70,20),name='two'),
                                   Dim(np.arange(16),name='three'),
                                   Dim(np.arange(1000,1200,200),name='four')],
                        test='tst')
        arr2 = np.arange(256,512).reshape((8,2,16,1))
        dat2 = DimArray(arr2,dims=[Dim(np.arange(100,500,50),name='one'),
                                   Dim(np.arange(30,70,20),name='two'),
                                   Dim(np.arange(16,32),name='three'),
                                   Dim(np.arange(1000,1200,200),name='four')],
                        test='tst')
        # extend with string label for axis
        dat1dat2 = dat1.extend(dat2,'three')
        arr1arr2 = np.concatenate([arr1,arr2],2)
        assert_array_equal(dat1dat2,arr1arr2)

        # extend with int label for axis
        dat1dat2 = dat1.extend(dat2,2)
        arr1arr2 = np.concatenate([arr1,arr2],2)
        assert_array_equal(dat1dat2,arr1arr2)


        # now the same again for the case when not all dimensions are identical in size:
        # make ndarrays and DimArrays with identical data
        arr1 = np.arange(4).reshape((1,1,4))
        dat1 = DimArray(arr1,dims=[Dim([100],name='one'),
                                   Dim([30],name='two'),
                                   Dim(np.arange(4),name='three')],
                        test='tst')
        arr2 = np.arange(4,16).reshape((1,3,4))
        dat2 = DimArray(arr2,dims=[Dim([100],name='one'),
                                   Dim(np.arange(40,90,20),name='two'),
                                   Dim(np.arange(4),name='three')],
                        test='tst')
        # extend with string label for axis
        dat1dat2 = dat1.extend(dat2,'two')
        arr1arr2 = np.concatenate([arr1,arr2],1)
        assert_array_equal(dat1dat2,arr1arr2)

        # extend with int label for axis
        dat1dat2 = dat1.extend(dat2,1)
        arr1arr2 = np.concatenate([arr1,arr2],1)
        assert_array_equal(dat1dat2,arr1arr2)
示例#28
0
    def test_make_bins(self):
        """Test the make_bins method"""
        # make ndarray and DimArray with identical data
        arr = np.arange(256).reshape((4,4,4,4))
        dat = DimArray(arr,dims=[Dim(np.arange(100,500,100),name='one'),
                                 Dim(np.arange(30,70,10),name='two'),
                                 Dim(np.arange(4),name='three'),
                                 Dim(np.arange(1000,1200,50),name='four')],
                       test='tst')
        
        # test making bins on all dimensions:
        test1a = dat.make_bins('one',2,np.mean)
        assert_array_equal(test1a.dims[0],np.array([150,350]))
        test1b = dat.make_bins(0,2,np.mean,bin_labels='sequential')
        assert_array_equal(test1b.dims[0],np.array([0,1]))
        assert_array_equal(test1a,test1b)
        test2a = dat.make_bins('two',2,np.mean)
        assert_array_equal(test2a.dims[1],np.array([35,55]))
        test2b = dat.make_bins(1,2,np.mean,bin_labels=['a','b'])
        assert_array_equal(test2b.dims[1],np.array(['a','b']))
        assert_array_equal(test2a,test2b)
        test3a = dat.make_bins('three',2,np.mean,bin_labels='function')
        assert_array_equal(test3a.dims[2],np.array([0.5,2.5]))
        test3b = dat.make_bins(2,2,np.mean)
        assert_array_equal(test3b.dims[2],np.array([0.5,2.5]))
        assert_array_equal(test3a,test3b)
        test4a = dat.make_bins('four',2,np.mean)
        assert_array_equal(test4a.dims[3],np.array([1025,1125]))
        test4b = dat.make_bins(3,2,np.mean)
        assert_array_equal(test4b.dims[3],np.array([1025,1125]))
        assert_array_equal(test4a,test4b)
        # test specifiying bins:
        test4c = dat.make_bins('four',[[1000,1100],[1100,2000]],np.mean)
        test4d = dat.make_bins(3,[[1000,1100],[1100,2000]],np.mean)
        assert_array_equal(test4c,test4d)
        assert_array_equal(test4a,test4d)

        split = np.split
        # compare output to reproduced output for ndarray:
        test1c = np.array(split(arr,2,axis=0)).mean(1)
        assert_array_equal(test1a,test1c)
        test2c = np.array(split(arr,2,axis=1)).mean(2).transpose([1,0,2,3])
        assert_array_equal(test2a,test2c)
        test3c = np.array(split(arr,2,axis=2)).mean(3).transpose([1,2,0,3])
        assert_array_equal(test3a,test3c)
        test4e = np.array(split(arr,2,axis=3)).mean(4).transpose([1,2,3,0])
        assert_array_equal(test4a,test4e)

        # compare sequential applications of make_bins to desired output:
        test12a = test1a.make_bins('two',2,np.mean)
        assert_array_equal(test1a.dims[0],test12a.dims[0])
        assert_array_equal(test2a.dims[1],test12a.dims[1])
        test21a = test2a.make_bins('one',2,np.mean)
        assert_array_equal(test1a.dims[0],test21a.dims[0])
        assert_array_equal(test2a.dims[1],test21a.dims[1])
        assert_array_equal(test12a,test21a)
        test12b = test1a.make_bins(1,2,np.mean)
        assert_array_equal(test1a.dims[0],test12b.dims[0])
        assert_array_equal(test2a.dims[1],test12b.dims[1])
        test21b = test2a.make_bins(0,2,np.mean)
        assert_array_equal(test1a.dims[0],test21b.dims[0])
        assert_array_equal(test2a.dims[1],test21b.dims[1])
        assert_array_equal(test12b,test21b)

        # check that attributes are preserved:
        for a in dat._attrs:
            if a == 'dims': continue
            self.assertEqual(dat.__getattribute__(a),
                             test1a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test1b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test2a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test2b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test3a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test3b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4d.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test12a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test12b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test21a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test21b.__getattribute__(a))
        for d,dn in enumerate(dat.dim_names):
            self.assertEquals(test1a.dim_names[d],dn)
            self.assertEquals(test1b.dim_names[d],dn)
            self.assertEquals(test2a.dim_names[d],dn)
            self.assertEquals(test2b.dim_names[d],dn)
            self.assertEquals(test3a.dim_names[d],dn)
            self.assertEquals(test3b.dim_names[d],dn)
            self.assertEquals(test4a.dim_names[d],dn)
            self.assertEquals(test4b.dim_names[d],dn)
            self.assertEquals(test12a.dim_names[d],dn)
            self.assertEquals(test12b.dim_names[d],dn)
            self.assertEquals(test21a.dim_names[d],dn)
            self.assertEquals(test21b.dim_names[d],dn)

        # test unequal bins:
        arr = np.arange(256).reshape((4,16,4))
        dat = DimArray(arr,dims=[Dim(np.arange(4),name='one'),
                                 Dim(np.arange(16),name='two'),
                                 Dim(np.arange(4),name='three')],test='tst')
        
        self.assertRaises(ValueError,dat.make_bins,'two',3,np.mean)
        test5a = dat.make_bins('two',3,np.mean,bin_labels=['1st','2nd','3rd'],
                               error_on_nonexact=False)
        test5b = dat.make_bins(1,[[0,6,'1st'],[6,11,'2nd'],[11,16,'3rd']],
                               np.mean)
        assert_array_equal(test5a,test5b)
        assert_array_equal(test5a.dims[1],np.array(['1st','2nd','3rd']))
        assert_array_equal(test5a.dims[1],test5b.dims[1])
        # check that attributes are preserved:
        for a in dat._attrs:
            if a == 'dims': continue
            self.assertEqual(dat.__getattribute__(a),
                             test5a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test5b.__getattribute__(a))
        for d,dn in enumerate(dat.dim_names):
            self.assertEquals(test5a.dim_names[d],dn)
            self.assertEquals(test5b.dim_names[d],dn)
示例#29
0
def test_read_multiple_files(tmpdir):
    # take tests from align
    fname1 = tmpdir.join("test_multi1.nc").strpath 
    fname2 = tmpdir.join("test_multi2.nc").strpath

    # stack, no need to align
    a = DimArray([1,2,3], dims=['x0'])
    b = DimArray([11,22,33], dims=['x0'])

    a.write_nc(fname1, 'a', mode='w')
    b.write_nc(fname2, 'a', mode='w')

    c_got = da.read_nc([fname1, fname2], axis='stackdim', keys=['a','b'])

    c = DimArray([[ 1,  2,  3],
                  [11, 22, 33]], axes=[['a', 'b'], [0, 1, 2]], dims=['stackdim', 'x0'])

    assert_equal_dimarrays(c_got['a'], c)

    # stack + align
    a = DimArray([1,2,3], axes=[[0,1,2]], dims=['x0'])
    b = DimArray([33,11], axes=[[2,0]], dims=['x0'])

    a.write_nc(fname1, 'a', mode='w')
    b.write_nc(fname2, 'a', mode='w')

    c_got = da.read_nc([fname2, fname1], axis='stackdim', align=True, sort=True, keys=['b','a'])

    c = DimArray([[11., np.nan, 33.],
                  [ 1.,     2.,  3.]], axes=[['b', 'a'], [0, 1, 2]], dims=['stackdim', 'x0'])

    assert_equal_dimarrays(c_got['a'], c)

    # concatenate 
    a = DimArray([1,2,3], dims=['x0'])
    b = DimArray([11,22,33], dims=['x0'])

    a.write_nc(fname1, 'a', mode='w')
    b.write_nc(fname2, 'a', mode='w')

    c_got = da.read_nc([fname1, fname2], axis='x0')

    c = DimArray([1,  2,  3, 11, 22, 33], axes=[[0, 1, 2, 0, 1, 2]], dims=['x0'])

    assert_equal_dimarrays(c_got['a'], c)

    # concatenate 2-D
    a = DimArray([[ 1,  2,  3],
                  [11, 22, 33]], axes=[[0,1],[2,1,0]])

    b = DimArray([[44, 55,  66],
                  [4,   5,   6]], axes=[[1,0],[2,1,0]])

    a.write_nc(fname1, 'a', mode='w')
    b.write_nc(fname2, 'a', mode='w')

    # ...first axis
    c0_got = da.read_nc([fname1, fname2], axis='x0')

    c0 = DimArray([[ 1,  2,  3],
                   [11, 22, 33],  
                   [44, 55, 66],  
                   [4,   5,  6]], axes=[[0,1,1,0],[2,1,0]]) 

    assert_equal_dimarrays(c0_got['a'], c0)
                  
    # axis "x0" is not aligned !
    with pytest.raises(ValueError):
        c1_got = da.read_nc([fname1, fname2], axis='x1')
        print(c1_got)

    # ...second axis
    c1_dima_got = da.read_nc([fname1, fname2], 'a', axis='x1', align=True, sort=True)

    c1_ds_got = da.read_nc([fname1, fname2], axis='x1', align=True, sort=True)

    c1 = DimArray([[ 1,  2,  3,  4,  5,  6],
                   [11, 22, 33, 44, 55, 66]], axes=[[0,1],[2,1,0,2,1,0]])

    assert_equal_dimarrays(c1_dima_got, c1)
    assert_equal_dimarrays(c1_ds_got['a'], c1)
示例#30
0
    def __getitem__(self, indices):
        if indices is None:
            rr = self.dataset.read(self.name)
            if rr.getDataType().isNumeric():
                ArrayMath.missingToNaN(rr, self.fill_value)
                array = MIArray(rr)
                data = DimArray(array, self.dims, self.fill_value,
                                self.dataset.proj)
                return data
            else:
                return rr

        if isinstance(indices, str):  #metadata
            rr = self.dataset.read(self.name)
            m = rr.findMember(indices)
            data = rr.getArray(0, m)
            return MIArray(data)

        if not isinstance(indices, tuple):
            inds = []
            inds.append(indices)
            indices = inds

        if len(indices) != self.ndim:
            print 'indices must be ' + str(self.ndim) + ' dimensions!'
            return None

        origin = []
        size = []
        stride = []
        dims = []
        for i in range(0, self.ndim):
            dimlen = self.dimlen(i)
            k = indices[i]
            if isinstance(k, int):
                sidx = k
                eidx = k
                step = 1
            elif isinstance(k, slice):
                sidx = 0 if k.start is None else k.start
                eidx = self.dimlen(i) - 1 if k.stop is None else k.stop
                step = 1 if k.step is None else k.step
            elif isinstance(k, (tuple, list)):
                dim = self.variable.getDimension(i)
                sidx = dim.getValueIndex(k[0])
                if len(k) == 1:
                    eidx = sidx
                    step = 1
                else:
                    eidx = dim.getValueIndex(k[1])
                    if len(k) == 2:
                        step = 1
                    else:
                        step = int(k[2] / dim.getDeltaValue)
                    if sidx > eidx:
                        iidx = eidx
                        eidx = sidx
                        sidx = iidx
            else:
                print k
                return None
            if eidx >= dimlen:
                print 'Index out of range!'
                return None
            origin.append(sidx)
            n = eidx - sidx + 1
            size.append(n)
            if n > 1:
                dim = self.variable.getDimension(i)
                if dim.isReverse():
                    step = -step
                dims.append(dim.extract(sidx, eidx, step))
            stride.append(step)
        rr = self.dataset.read(self.name, origin, size, stride).reduce()
        if rr.getSize() == 1:
            return rr.getObject(0)
        ArrayMath.missingToNaN(rr, self.fill_value)
        array = MIArray(rr)
        data = DimArray(array, dims, self.fill_value, self.dataset.proj)
        return data
示例#31
0
def a(ax0, ax1):
    values = np.random.randn(ax0.size, ax1.size)
    a = DimArray(values, axes=[ax0, ax1])
    a.units = 'meters'
    a.mutable_att = ['a1','a2']
    return a
示例#32
0
def _get_weights(self, axis=None, mirror_nans=True, weights=None):
    """ Build array of weights based on individual axes' weights attribute

    Parameters
    ----------
    axis : int or str, optional
        if None a N-D weight is created, otherwise 1-D only
    mirror_nans : bool, optional
        mirror `values`'s NaNs in created weights (True by default)
    {weights}

    Returns
    -------
    full_weights : DimArray of weights, or None

    See Also
    --------
    DimArray.mean, DimArray.var, DimArray.std

    Examples
    --------

    Simpler examples are found Dimarray.mean's doc.
    These are mostly meant as doctest.

    >>> from dimarray import DimArray
    >>> np.random.seed(0) # to make results reproducible
    >>> v = DimArray(np.random.rand(3,2), axes=[[-80, 0, 80], [-180, 180]], dims=['lat','lon'])
    >>> v._get_weights() # None
    >>> w = lambda x : np.cos(np.radians(v.lat))
    >>> v.axes['lat'].weights = w
    >>> v._get_weights()
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 0.17364818,  0.17364818],
           [ 1.        ,  1.        ],
           [ 0.17364818,  0.17364818]])
    >>> v.axes['lat'].weights = None
    >>> v._get_weights() # None

    Can pass the weigthts as a dictionary 

    >>> v._get_weights(weights={{'lat':w}}) 
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 0.17364818,  0.17364818],
           [ 1.        ,  1.        ],
           [ 0.17364818,  0.17364818]])

    Or by indicating the axis
    
    >>> v._get_weights(weights=w, axis='lat') 
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 0.17364818,  0.17364818],
           [ 1.        ,  1.        ],
           [ 0.17364818,  0.17364818]])

    It possible to mix up axis and dict-input weights

    >>> v.axes['lat'].weights = w
    >>> v._get_weights(weights={{'lon':lambda x:((x+180)/100)**2}}) 
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 0.       ,  1.5628336],
           [ 0.       ,  9.       ],
           [ 0.       ,  1.5628336]])

    But if the transformation is required on one axis only, 
    weights on other axes are not accounted for since they
    would not affect the result of the transformation.

    >>> v._get_weights(weights={{'lon':lambda x:((x+180)/100)**2}}, axis='lat') 
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 0.17364818,  0.17364818],
           [ 1.        ,  1.        ],
           [ 0.17364818,  0.17364818]])

    What is provided as argument overrides axis attribute. 
    Here when the weights are provided for one axis only:

    >>> v._get_weights(weights=lambda x:((x+180)/100)**2, axis='lat') 
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 1.,  1.],
           [ 1.,  1.],
           [ 4.,  4.]])

    Or when the weight is provided as a numpy array

    >>> w = np.array([[ 1.,  1.],
    ...               [ 1.,  1.],
    ...               [ 4.,  4.]])
    >>> v._get_weights(weights=w)
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 1.,  1.],
           [ 1.,  1.],
           [ 4.,  4.]])

    Or even as DimArray (which will be broadcast with the appropriate shape)

    >>> wa = DimArray(w[:,0], axes=[v.axes['lat']])
    >>> v._get_weights(weights=wa)
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 1.,  1.],
           [ 1.,  1.],
           [ 4.,  4.]])

    Any nans in the data will induce 0 in the weights, 
    since the element will then be discarded or the result be NaN anyway.

    >>> v.values[1, 0] = np.nan
    >>> v._get_weights(weights=w)
    dimarray: 6 non-null elements (0 null)
    0 / lat (3): -80 to 80
    1 / lon (2): -180 to 180
    array([[ 1.,  1.],
           [ 0.,  1.],
           [ 4.,  4.]])
    """
    # avoid circular import
    from dimarray import DimArray

    # dims: axes from which the weights should be computed
    if axis is None:
        dims = self.dims
    elif type(axis) is tuple:
        dims = axis
    else:
        dims = (axis,)

    # common case: no weight is provided and no Axis has weights
    # if is enough to check on all axes to be reduced, weights on other axes 
    # make no difference to the reduction transformation
    if weights is None and np.all([self.axes[dim].weights is None for dim in dims]):
        return None

    # for 1-D array, same as axis is None is like axis=0
    if axis is None and self.ndim == 1:
        axis = 0

    # check `weights` type

    # special case: if weights is DimArray, just use it as full weight
    if isinstance(weights, DimArray):
        full_weights = weights.broadcast(self.axes) # broadcast weights on appropriate dimension

    # special case II: numpy array of appropriate dimension ==> just use it as full weight
    elif isinstance(weights, np.ndarray) and weights.ndim > 1:
        assert weights.shape == self.shape, "`weights` must be either 1-D or have same shape as DimArray"
        full_weights = DimArray(weights, self.axes)

    # make axis weights based by combining single-axis weights (standard form)
    else:
        array_type = isinstance(weights, np.ndarray) and weights.dim == 1
        dict_type = isinstance(weights, dict)
        assert weights is None or callable(weights) or array_type or dict_type, "unexpected type for `weights`"
        assert weights is None or not (not dict_type and axis is None), "`weights` type incompatible with flattening operation, provide `axis` or use dict-type weights"
        assert weights is None or not (not dict_type and type(axis) is tuple), "`weights` type incompatible with flattening operation, use dict-type weights"

        # make weights dict-like  (operation on single axis)
        if not dict_type: 
            weights = {axis: weights}

        # Create weights from the axes (only compute for the axes to be reduced)
        full_weights = 1.
        for axis in dims:
            ax = self.axes[axis]

            # get proper weights array: from `Axis` or user-provided on-the-fly
            if weights is not None and axis in weights.keys():
                axis_weights = weights[axis]
            else:
                axis_weights = ax.weights

            # if weight is None, just skip it
            if axis_weights is None: 
                continue

            # broadcast and multiply weights for all axes involved 
            full_weights = ax._get_weights(axis_weights).reshape(dims) * full_weights

        # SPECIAL CASE: NO weights (e.g. weights parameter provided as {} or {'lat':None} and no axis weights attributes):
        if full_weights is 1.:
            return None

        full_weights = full_weights.broadcast(self.axes)

    # set 0 in a where there are NaNs. 
    if mirror_nans and anynan(self.values):
        full_weights.values[np.isnan(self.values)] = 0

    assert full_weights is not None
    
    return full_weights
示例#33
0
    def test_getitem(self):
        # make ndarray an Dimaray with identical data
        arr = np.random.rand(3)
        dat = DimArray(arr,dims=[Dim(range(3),name='dim1')])
        self.assertEquals(dat[0],dat['dim1==0'])
        self.assertEquals(dat[1],dat['dim1==1'])
        self.assertEquals(dat[2],dat['dim1==2'])
        self.assertEquals(arr[0],dat['dim1==0'])
        self.assertEquals(arr[1],dat['dim1==1'])
        self.assertEquals(arr[2],dat['dim1==2'])
        
        arr = np.random.rand(3,2)
        dat = DimArray(arr,dims=[Dim(range(3),name='dim1'),
                                 Dim(range(2),name='dim2')])
        assert_array_equal(dat[:,0],dat['dim2==0'])
        assert_array_equal(dat[1],dat['dim1==1'])
        assert_array_equal(dat[2],dat['dim1==2'])
        assert_array_equal(arr[0],dat['dim1==0'])
        assert_array_equal(arr[1],dat['dim1==1'])
        assert_array_equal(arr[2],dat['dim1==2'])

        assert_array_equal(dat[0,0],dat['dim1==0','dim2==0'])
        assert_array_equal(dat[0,1],dat['dim1==0','dim2==1'])
        assert_array_equal(dat[1,0],dat['dim1==1','dim2==0'])
        assert_array_equal(dat[1,1],dat['dim1==1','dim2==1'])
        assert_array_equal(dat[2,0],dat['dim1==2','dim2==0'])
        assert_array_equal(dat[2,1],dat['dim1==2','dim2==1'])

        bool_indx = np.zeros(arr.shape,np.bool)
        bool_indx[2,1] = True
        assert_array_equal(dat[2,1],dat[bool_indx])
        bool_indx[1,1] = True
        assert_array_equal(dat[1:3,1],dat[bool_indx])
        # The below test makes sure that one can work with the results
        # of a Boolean slice into a DimArray object. Because the
        # dimensions get lost with Boolean indices we need to test
        # that there are no complaints from dimension checking (the
        # result should be upcast as an AttrArray):
        test1 = dat[bool_indx] + 1
        test2 = dat[1:3,1] + 1
        assert_array_equal(test1,test2)

        arr = np.random.rand(3)
        dat = DimArray(arr)
        bool_indx = np.array([True,False,True])
        assert_array_equal(dat[bool_indx],arr[bool_indx])
        assert_array_equal(dat[bool_indx].dims[0],dat.dims[0][bool_indx])   

        dat_array = np.random.rand(2,4,5)
        dat = DimArray(dat_array,
                       dims=[Dim(range(2),name='dim1',unit='Hz'),
                             Dim(range(4),name='dim2',bla='bla'),
                             Dim(range(5),name='dim3',attr1='attr1',
                                 attr2='attr2')])

        # check that the correct elements are returned:
        self.assertEquals(dat[0,0,0],dat_array[0,0,0])
        self.assertEquals(dat[0,1,2],dat_array[0,1,2])
        self.assertEquals(dat[1,0,3],dat_array[1,0,3])
        
        # check that the correct elements are returned:
        self.assertEquals(dat['dim1==0','dim2==0','dim3==0'],dat_array[0,0,0])
        self.assertEquals(dat['dim1==0','dim2==1','dim3==2'],dat_array[0,1,2])
        self.assertEquals(dat['dim1==1','dim2==0','dim3==3'],dat_array[1,0,3])
        
        # check that the returned DimArray and its dims have proper shapes:
        self.assertEquals(dat[0].shape,dat_array[0].shape)
        self.assertEquals(len(dat[0].dims[0]),dat_array[0].shape[0])
        self.assertEquals(len(dat[0].dims[1]),dat_array[0].shape[1])
        self.assertEquals(dat[0].dim_names,['dim2','dim3'])
        
        self.assertEquals(dat[1].shape,dat_array[1].shape)
        self.assertEquals(len(dat[1].dims[0]),dat_array[1].shape[0])
        self.assertEquals(len(dat[1].dims[1]),dat_array[1].shape[1])
        self.assertEquals(dat[1].dim_names,['dim2','dim3'])

        self.assertEquals(dat[0,0].shape,dat_array[0,0].shape)
        self.assertEquals(len(dat[0,0].dims[0]),dat_array[0,0].shape[0])
        self.assertEquals(dat[0,0].dim_names,['dim3'])

        self.assertEquals(dat[:,:,0].shape,dat_array[:,:,0].shape)
        self.assertEquals(len(dat[:,:,0].dims[0]),dat_array[:,:,0].shape[0])
        self.assertEquals(len(dat[:,:,0].dims[1]),dat_array[:,:,0].shape[1])
        self.assertEquals(dat[:,:,0].dim_names,['dim1','dim2'])

        self.assertEquals(dat[0:1,2,0:3].shape,dat_array[0:1,2,0:3].shape)
        self.assertEquals(len(dat[0:1,2,0:3].dims[0]),
                          dat_array[0:1,2,0:3].shape[0])
        self.assertEquals(len(dat[0:1,2,0:3].dims[1]),
                          dat_array[0:1,2,0:3].shape[1])
        self.assertEquals(dat[0:1,2,0:3].dim_names,['dim1','dim3'])

        self.assertEquals(dat[0:1].shape,dat_array[0:1].shape)
        self.assertEquals(len(dat[0:1].dims[0]),
                          dat_array[0:1].shape[0])
        self.assertEquals(len(dat[0:1].dims[1]),
                          dat_array[0:1].shape[1])
        self.assertEquals(dat[0:1].dim_names,['dim1','dim2','dim3'])

        self.assertEquals(dat[1].shape,dat_array[1].shape)
        self.assertEquals(len(dat[1].dims[0]),dat_array[1].shape[0])
        self.assertEquals(len(dat[1].dims[1]),dat_array[1].shape[1])
        self.assertEquals(dat[1].dim_names,['dim2','dim3'])

        self.assertEquals(dat[0,0].shape,dat_array[0,0].shape)
        self.assertEquals(len(dat[0,0].dims[0]),dat_array[0,0].shape[0])
        self.assertEquals(dat[0,0].dim_names,['dim3'])

        self.assertEquals(dat[:,:,0].shape,dat_array[:,:,0].shape)
        self.assertEquals(len(dat[:,:,0].dims[0]),dat_array[:,:,0].shape[0])
        self.assertEquals(len(dat[:,:,0].dims[1]),dat_array[:,:,0].shape[1])
        self.assertEquals(dat[:,:,0].dim_names,['dim1','dim2'])

        self.assertEquals(dat[0:1,2,0:3].shape,dat_array[0:1,2,0:3].shape)
        self.assertEquals(len(dat[0:1,2,0:3].dims[0]),
                          dat_array[0:1,2,0:3].shape[0])
        self.assertEquals(len(dat[0:1,2,0:3].dims[1]),
                          dat_array[0:1,2,0:3].shape[1])
        self.assertEquals(dat[0:1,2,0:3].dim_names,['dim1','dim3'])
        print dat.dims
        print dat['dim2>0'].dims
        assert_array_equal(dat['dim2>0'].dims[1],dat.dims[1][1:])

        assert_array_equal(dat[1:,1:],dat['dim1>0','dim2>0'])

        
        # when the name of a Dim instance is given, that dim should be
        # returned:
        self.assertTrue(isinstance(dat['dim1'],Dim))
        self.assertTrue(isinstance(dat['dim2'],Dim))
        self.assertTrue(isinstance(dat['dim3'],Dim))

        self.assertEquals(dat['dim1'].name,'dim1')
        self.assertEquals(dat['dim1'].unit,'Hz')
        self.assertEquals(dat['dim1'][-1],1)
        self.assertEquals(len(dat['dim1']),2)
        self.assertEquals(dat['dim2'].name,'dim2')
        self.assertEquals(dat['dim2'].bla,'bla')
        self.assertEquals(dat['dim2'][-1],3)
        self.assertEquals(len(dat['dim2']),4)
        self.assertEquals(dat['dim3'].name,'dim3')
        self.assertEquals(dat['dim3'].attr1,'attr1')
        self.assertEquals(dat['dim3'].attr2,'attr2')
        self.assertEquals(dat['dim3'][-1],4)
        self.assertEquals(len(dat['dim3']),5)

        # when another string is given, it should be evaluated:
        self.assertEquals(dat['dim1==0'].shape,(4,5))
        self.assertEquals(len(dat['dim1==0'].dims[0]),4)
        self.assertEquals(len(dat['dim1==0'].dims[1]),5)
        self.assertEquals(dat['dim1==0'].dim_names,['dim2','dim3'])

        self.assertEquals(dat['dim2==1'].shape,(2,5))
        self.assertEquals(len(dat['dim2==1'].dims[0]),2)
        self.assertEquals(len(dat['dim2==1'].dims[1]),5)
        self.assertEquals(dat['dim2==1'].dim_names,['dim1','dim3'])

        self.assertEquals(dat['dim2<2'].shape,(2,2,5))
        self.assertEquals(len(dat['dim2<2'].dims[0]),2)
        self.assertEquals(len(dat['dim2<2'].dims[1]),2)
        self.assertEquals(len(dat['dim2<2'].dims[2]),5)
        self.assertEquals(dat['dim2<2'].dim_names,['dim1','dim2','dim3'])
        
        self.assertEquals(dat['dim3!=2'].shape,(2,4,4))
        self.assertEquals(len(dat['dim3!=2'].dims[0]),2)
        self.assertEquals(len(dat['dim3!=2'].dims[1]),4)
        self.assertEquals(len(dat['dim3!=2'].dims[2]),4)
        self.assertEquals(dat['dim3!=2'].dim_names,['dim1','dim2','dim3'])

        # check that the right values are returned:
        self.assertEquals(dat['dim3!=2'][0,0,0],dat_array[0,0,0])
        self.assertEquals(dat['dim3!=2'][1,2,1],dat_array[1,2,1])
        self.assertEquals(dat['dim3!=2'][1,2,3],dat_array[1,2,4])

        # check indexing with a tuple of arrays and with 1-level dimensions:
        dim1=Dim(['dim'],'dim1')
        dim2=Dim([1,2],'dim2')
        dim3=Dim([3,4,5],'dim3')
        dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
        self.assertEquals(dat[np.ix_([0],[0,1],[0,1])].shape,(1,2,2))

        # test string index returning nothing

        # test list index
        dim1=Dim(['dim'],'dim1')
        dim2=Dim([1,2],'dim2')
        dim3=Dim([3,4,5],'dim3')
        dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
        assert_array_equal(dat[[0]],dat[np.array([0])])
示例#34
0
#
# Pythonic fancy indexing of DimArrays!
#

import numpy as np
from dimarray import Dim,DimArray,AttrArray

if __name__ == "__main__":

    dims = [Dim(data=np.arange(20), name='time'),
            Dim(data=np.arange(10), name='freqs'),
            Dim(data=np.arange(30), name='events')]

    dat = DimArray(data=np.random.rand(20,10,30), dims=dims)

    # select some data
    ind = ((dat['time'] > 10) &
           ((dat['events']<10) | (dat['events']>20)) &
           (dat['freqs'].is_in(range(0,10,2))))

    subdat = dat[ind]

    print dat.shape
    print subdat.shape
示例#35
0
    def test_funcs(self):
        """Test the numpy functions"""
        # make ndarray an Dimaray with identical data
        arr = np.random.rand(5,12,3,1)
        dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                                 Dim(range(12),name='two'),
                                 Dim(range(3),name='three'),
                                 Dim(range(1),name='four')],test='tst')
        
        # these are functions that take an axis argument:
        funcs = [np.mean,np.all,np.any,np.argmax,np.argmin,np.argsort,
                 np.cumprod,np.cumsum,np.max,np.mean,np.min,np.prod,
                 np.ptp,np.std,np.sum,np.var]
        
        # The axes for the ndarray:
        axes_arr = [None,0,1,2,3,0,1,2,3]
        # The axes for the DimArray (we want to test indexing them by
        # number and name):
        axes_dat = [None,0,1,2,3,'one','two','three','four']

        # loop through the functions and axes:
        for func in funcs:
            for a in range(len(axes_arr)):
                # apply the function to the ndarray and the DimArray
                arr_func = func(arr,axis=axes_arr[a])
                dat_func = func(dat,axis=axes_dat[a])
                # make sure they are the same:
                assert_array_equal(arr_func,dat_func)
                if not(axes_dat[a] is None):
                    # ensure we still have a DimArray
                    self.assertTrue(isinstance(dat_func,DimArray))
                    # ensure that the attributes are preserved
                    self.assertEquals(dat_func.test,'tst')
                    
        # same tests as above but this time calling the DimArray
        # methods directly (this test is necessary because it is in
        # principle possible for the numpy function to work and the
        # DimArray method not to work (or vice versa):
        for a in range(len(axes_arr)):
            assert_array_equal(arr.all(axes_arr[a]),
                               dat.all(axes_dat[a]))
            assert_array_equal(arr.any(axes_arr[a]),
                               dat.any(axes_dat[a]))
            assert_array_equal(arr.argmax(axes_arr[a]),
                               dat.argmax(axes_dat[a]))
            assert_array_equal(arr.argmin(axes_arr[a]),
                               dat.argmin(axes_dat[a]))
            assert_array_equal(arr.argsort(axes_arr[a]),
                               dat.argsort(axes_dat[a]))
            assert_array_equal(arr.cumprod(axes_arr[a]),
                               dat.cumprod(axes_dat[a]))
            assert_array_equal(arr.cumsum(axes_arr[a]),
                               dat.cumsum(axes_dat[a]))
            assert_array_equal(arr.max(axes_arr[a]),
                               dat.max(axes_dat[a]))
            assert_array_equal(arr.mean(axes_arr[a]),
                               dat.mean(axes_dat[a]))
            assert_array_equal(arr.min(axes_arr[a]),
                               dat.min(axes_dat[a]))
            assert_array_equal(arr.prod(axes_arr[a]),
                               dat.prod(axes_dat[a]))
            assert_array_equal(arr.ptp(axes_arr[a]),
                               dat.ptp(axes_dat[a]))
            assert_array_equal(arr.std(axes_arr[a]),
                               dat.std(axes_dat[a]))
            assert_array_equal(arr.sum(axes_arr[a]),
                               dat.sum(axes_dat[a]))
            assert_array_equal(arr.var(axes_arr[a]),
                               dat.var(axes_dat[a]))
            if not(axes_dat[a] is None):
                self.assertTrue(isinstance(dat.all(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.any(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argmax(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argmin(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argsort(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.cumprod(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.cumsum(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.max(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.mean(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.min(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.prod(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.ptp(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.std(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.sum(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.var(axes_arr[a]),DimArray))
                
                self.assertEquals(dat.all(axes_arr[a]).test,'tst')
                self.assertEquals(dat.any(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argmax(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argmin(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argsort(axes_arr[a]).test,'tst')
                self.assertEquals(dat.cumprod(axes_arr[a]).test,'tst')
                self.assertEquals(dat.cumsum(axes_arr[a]).test,'tst')
                self.assertEquals(dat.max(axes_arr[a]).test,'tst')
                self.assertEquals(dat.mean(axes_arr[a]).test,'tst')
                self.assertEquals(dat.min(axes_arr[a]).test,'tst')
                self.assertEquals(dat.prod(axes_arr[a]).test,'tst')
                self.assertEquals(dat.ptp(axes_arr[a]).test,'tst')
                self.assertEquals(dat.std(axes_arr[a]).test,'tst')
                self.assertEquals(dat.sum(axes_arr[a]).test,'tst')
                self.assertEquals(dat.var(axes_arr[a]).test,'tst')
                
        # test functions that require function specific input:
        for a in range(len(axes_arr)):
            if axes_arr[a] is None:
                length = len(arr)
            else:
                length = np.shape(arr)[axes_arr[a]]
            cond = np.random.random(length)>0.5
            # calling the compress method directly:
            arr_func = arr.compress(cond,axis=axes_arr[a])
            dat_func = dat.compress(cond,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,DimArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy compress function:
            arr_func = np.compress(cond,arr,axis=axes_arr[a])
            dat_func = np.compress(cond,dat,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,DimArray))
                self.assertEquals(dat_func.test,'tst')            

            # the below tests should not run with axis==None:
            if axes_arr[a] is None:
                continue
            
            reps = np.random.random_integers(low=1, high=10, size=length)
            # calling the repeat method directly:
            arr_func = arr.repeat(reps,axis=axes_arr[a])
            dat_func = dat.repeat(reps,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy repeat function:
            arr_func = np.repeat(arr,reps,axis=axes_arr[a])
            dat_func = np.repeat(dat,reps,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')

            # skip the last dimension for this test for
            # convenience (the last dimension only has 1 level):
            if a >= 3:
                continue
            indcs = np.arange(len(arr.shape))
            # calling the take method directly (squeeze, to get rid of
            # the last dimension):
            arr_func = arr.squeeze().take(indcs,axis=axes_arr[a])
            dat_func = dat.squeeze().take(indcs,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a]:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy take function directly (squeeze, to get rid of
            # the last dimension):
            arr_func = np.take(arr.squeeze(),indcs,axis=axes_arr[a])
            dat_func = np.take(dat.squeeze(),indcs,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a]:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')

        # This should work with numpy 1.2 but doesn't
        # with 1.1.1 or below (therfore commented out for now):
        # arr_func = arr.clip(0.4,0.6)
        # dat_func = dat.clip(0.4,0.6)
        # assert_array_equal(arr_func,dat_func)
        #self.assertTrue(isinstance(dat_func,DimArray))
        #self.assertEquals(dat_func.test,'tst')
        #arr_func = np.clip(arr,0.4,0.6)
        #dat_func = np.clip(dat,0.4,0.6)
        #assert_array_equal(arr_func,dat_func)
        #self.assertTrue(isinstance(dat_func,DimArray))
        #self.assertEquals(dat_func.test,'tst')

        # other functions that don't necessarily take return a
        # DimArray:
        funcs = [np.diagonal,np.nonzero,np.ravel,np.squeeze,
                 np.sort,np.trace,np.transpose]
        for func in funcs:
            arr_func = func(arr)
            dat_func = func(dat)
            assert_array_equal(arr_func,dat_func)

        # same tests as above, but calling the methods directly:
        assert_array_equal(arr.diagonal(),dat.diagonal())
        assert_array_equal(arr.nonzero(),dat.nonzero())
        assert_array_equal(arr.ravel(),dat.ravel())
        assert_array_equal(arr.squeeze(),dat.squeeze())
        assert_array_equal(arr.sort(),dat.sort())
        assert_array_equal(arr.trace(),dat.trace())
        assert_array_equal(arr.transpose(),dat.transpose())
        # there is no numpy.flatten() function, so we only call the
        # method directly:
        assert_array_equal(arr.flatten(),dat.flatten())
        
        assert_array_equal(arr.swapaxes(0,1),dat.swapaxes(0,1))
        self.assertTrue(isinstance(dat.swapaxes(0,1),DimArray))
        self.assertEquals(dat.swapaxes(0,1).test,'tst')
        assert_array_equal(arr.swapaxes(0,1),dat.swapaxes('one','two'))
        self.assertTrue(isinstance(dat.swapaxes('one','two'),DimArray))
        self.assertEquals(dat.swapaxes('one','two').test,'tst')
        assert_array_equal(arr.swapaxes(1,3),dat.swapaxes(1,3))
        self.assertTrue(isinstance(dat.swapaxes(1,3),DimArray))
        self.assertEquals(dat.swapaxes(1,3).test,'tst')
        assert_array_equal(arr.swapaxes(1,3),dat.swapaxes('two','four'))
        self.assertTrue(isinstance(dat.swapaxes('two','four'),DimArray))
        self.assertEquals(dat.swapaxes('two','four').test,'tst')