示例#1
0
def test_squareBlockMatrix():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    Y = BlockMatrix([[A]])

    assert X.is_square

    assert (block_collapse(X + Identity(m + n)) ==
            BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
    X + Identity(m + n)

    assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
    assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul

    assert block_collapse(Y.inverse()) == A.inverse()
    assert block_collapse(X.inverse()) == BlockMatrix([
        [(-B*D.inverse()*C + A).inverse(), -A.inverse()*B*(D + -C*A.inverse()*B).inverse()],
        [-(D - C*A.inverse()*B).inverse()*C*A.inverse(), (D - C*A.inverse()*B).inverse()]])

    assert isinstance(X.inverse(), Inverse)

    assert not X.is_Identity

    Z = BlockMatrix([[Identity(n), B], [C, D]])
    assert not Z.is_Identity
示例#2
0
def test_reblock_2x2():
    B = BlockMatrix([[MatrixSymbol('A_%d%d' % (i, j), 2, 2) for j in range(3)]
                     for i in range(3)])
    assert B.blocks.shape == (3, 3)

    BB = reblock_2x2(B)
    assert BB.blocks.shape == (2, 2)

    assert B.shape == BB.shape
    assert B.as_explicit() == BB.as_explicit()
示例#3
0
def test_reblock_2x2():
    B = BlockMatrix([[MatrixSymbol('A_%d%d' % (i, j), 2, 2)
                      for j in range(3)]
                     for i in range(3)])
    assert B.blocks.shape == (3, 3)

    BB = reblock_2x2(B)
    assert BB.blocks.shape == (2, 2)

    assert B.shape == BB.shape
    assert B.as_explicit() == BB.as_explicit()
示例#4
0
def test_BlockMatrix():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, k)
    C = MatrixSymbol('C', l, m)
    D = MatrixSymbol('D', l, k)
    M = MatrixSymbol('M', m + k, p)
    N = MatrixSymbol('N', l + n, k + m)
    X = BlockMatrix(Matrix([[A, B], [C, D]]))

    assert X.__class__(*X.args) == X

    # block_collapse does nothing on normal inputs
    E = MatrixSymbol('E', n, m)
    assert block_collapse(A + 2*E) == A + 2*E
    F = MatrixSymbol('F', m, m)
    assert block_collapse(E.T*A*F) == E.T*A*F

    assert X.shape == (l + n, k + m)
    assert X.blockshape == (2, 2)
    assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
    assert transpose(X).shape == X.shape[::-1]

    # Test that BlockMatrices and MatrixSymbols can still mix
    assert (X*M).is_MatMul
    assert X._blockmul(M).is_MatMul
    assert (X*M).shape == (n + l, p)
    assert (X + N).is_MatAdd
    assert X._blockadd(N).is_MatAdd
    assert (X + N).shape == X.shape

    E = MatrixSymbol('E', m, 1)
    F = MatrixSymbol('F', k, 1)

    Y = BlockMatrix(Matrix([[E], [F]]))

    assert (X*Y).shape == (l + n, 1)
    assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
    assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F

    # block_collapse passes down into container objects, transposes, and inverse
    assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
    assert block_collapse(Tuple(X*Y, 2*X)) == (
        block_collapse(X*Y), block_collapse(2*X))

    # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
    Ab = BlockMatrix([[A]])
    Z = MatrixSymbol('Z', *A.shape)
    assert block_collapse(Ab + Z) == A + Z
示例#5
0
def test_block_plus_ident():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    assert bc_block_plus_ident(X+Identity(m+n)) == \
            BlockDiagMatrix(Identity(n), Identity(m)) + X
示例#6
0
def test_blockcut():
    A = MatrixSymbol('A', n, m)
    B = blockcut(A, (n / 2, n / 2), (m / 2, m / 2))
    assert A[i, j] == B[i, j]
    assert B == BlockMatrix([[A[:n / 2, :m / 2], A[:n / 2, m / 2:]],
                             [A[n / 2:, :m / 2], A[n / 2:, m / 2:]]])

    M = ImmutableMatrix(4, 4, range(16))
    B = blockcut(M, (2, 2), (2, 2))
    assert M == ImmutableMatrix(B)

    B = blockcut(M, (1, 3), (2, 2))
    assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
示例#7
0
def test_BlockMatrix():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, k)
    C = MatrixSymbol('C', l, m)
    D = MatrixSymbol('D', l, k)
    M = MatrixSymbol('M', m + k, p)
    N = MatrixSymbol('N', l + n, k + m)
    X = BlockMatrix(Matrix([[A, B], [C, D]]))

    assert X.__class__(*X.args) == X

    # block_collapse does nothing on normal inputs
    E = MatrixSymbol('E', n, m)
    assert block_collapse(A + 2 * E) == A + 2 * E
    F = MatrixSymbol('F', m, m)
    assert block_collapse(E.T * A * F) == E.T * A * F

    assert X.shape == (l + n, k + m)
    assert X.blockshape == (2, 2)
    assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
    assert transpose(X).shape == X.shape[::-1]

    # Test that BlockMatrices and MatrixSymbols can still mix
    assert (X * M).is_MatMul
    assert X._blockmul(M).is_MatMul
    assert (X * M).shape == (n + l, p)
    assert (X + N).is_MatAdd
    assert X._blockadd(N).is_MatAdd
    assert (X + N).shape == X.shape

    E = MatrixSymbol('E', m, 1)
    F = MatrixSymbol('F', k, 1)

    Y = BlockMatrix(Matrix([[E], [F]]))

    assert (X * Y).shape == (l + n, 1)
    assert block_collapse(X * Y).blocks[0, 0] == A * E + B * F
    assert block_collapse(X * Y).blocks[1, 0] == C * E + D * F

    # block_collapse passes down into container objects, transposes, and inverse
    assert block_collapse(transpose(X * Y)) == transpose(block_collapse(X * Y))
    assert block_collapse(Tuple(X * Y, 2 * X)) == (block_collapse(X * Y),
                                                   block_collapse(2 * X))

    # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
    Ab = BlockMatrix([[A]])
    Z = MatrixSymbol('Z', *A.shape)
    assert block_collapse(Ab + Z) == A + Z
示例#8
0
def test_bc_transpose():
    assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
        BlockMatrix([[A.T, C.T], [B.T, D.T]])
示例#9
0
def test_bc_matadd():
    assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
        BlockMatrix([[G+H, H+H]])
示例#10
0
def test_bc_matmul():
    assert bc_matmul(H * b1 * b2 * G) == BlockMatrix([[
        (H * G * G + H * H * H) * G
    ]])
示例#11
0
def test_deblock():
    B = BlockMatrix([[MatrixSymbol('A_%d%d' % (i, j), n, n) for j in range(4)]
                     for i in range(4)])

    assert deblock(reblock_2x2(B)) == B
示例#12
0
def test_BlockMatrix_Determinant():
    A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
    X = BlockMatrix([[A, B], [C, D]])

    assert isinstance(det(X), Expr)
示例#13
0
def test_BlockMatrix_trace():
    A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
    X = BlockMatrix([[A, B], [C, D]])
    assert trace(X) == trace(A) + trace(D)
示例#14
0
from diofant.matrices.expressions import (MatrixSymbol, Identity, Inverse,
                                          trace, Transpose, det)
from diofant.matrices import Matrix, ImmutableMatrix
from diofant.core import Tuple, symbols, Expr
from diofant.functions import transpose

__all__ = ()

i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
G = MatrixSymbol('G', n, n)
H = MatrixSymbol('H', n, n)
b1 = BlockMatrix([[G, H]])
b2 = BlockMatrix([[G], [H]])


def test_bc_matmul():
    assert bc_matmul(H * b1 * b2 * G) == BlockMatrix([[
        (H * G * G + H * H * H) * G
    ]])


def test_bc_matadd():
    assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
        BlockMatrix([[G+H, H+H]])


def test_bc_transpose():
示例#15
0
def test_BlockMatrix_equals():
    A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
    X = BlockMatrix([[A, B], [C, D]])
    assert X.equals(X) is True
    assert X.equals(Matrix([1, 2])) is False