示例#1
0
def test_RR_Float():
    f1 = Float("1.01")
    f2 = Float("1.0000000000000000000001")
    assert f1._prec == 53
    assert f2._prec == 80
    assert RR(f1) - 1 > 1e-50
    assert RR(f2) - 1 < 1e-50  # RR's precision is lower than f2's

    RR2 = RealField(prec=f2._prec)
    assert RR2(f1) - 1 > 1e-50
    assert RR2(f2) - 1 > 1e-50  # RR's precision is equal to f2's
示例#2
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    pytest.raises(DomainError, lambda: RR.get_ring())
    pytest.raises(DomainError, lambda: ALG.get_ring())
示例#3
0
def test_Domain_interface():
    pytest.raises(NotImplementedError, lambda: DomainElement().parent())

    assert RR(1).parent() is RR
    assert CC(1).parent() is CC

    RR3 = RealField(prec=53, dps=3)
    assert str(RR3(1.7611107002)) == '1.76'
示例#4
0
 def from_diofant(self, a):
     """Convert Diofant's Rational to `dtype`. """
     if a.is_Rational:
         return PythonRational(a.p, a.q)
     elif a.is_Float:
         from diofant.polys.domains import RR
         p, q = RR.to_rational(a)
         return PythonRational(int(p), int(q))
     else:
         raise CoercionFailed("expected `Rational` object, got %s" % a)
示例#5
0
def test_RR_double():
    assert RR(3.14) > 1e-50
    assert RR(1e-13) > 1e-50
    assert RR(1e-14) > 1e-50
    assert RR(1e-15) > 1e-50
    assert RR(1e-20) > 1e-50
    assert RR(1e-40) > 1e-50
示例#6
0
def test_Domain_get_exact():
    assert EX.get_exact() == EX
    assert ZZ.get_exact() == ZZ
    assert QQ.get_exact() == QQ
    assert RR.get_exact() == QQ
    assert ALG.get_exact() == ALG
    assert ZZ[x].get_exact() == ZZ[x]
    assert QQ[x].get_exact() == QQ[x]
    assert ZZ[x, y].get_exact() == ZZ[x, y]
    assert QQ[x, y].get_exact() == QQ[x, y]
    assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
    assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
    assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
    assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
示例#7
0
def test_Domain_get_field():
    assert EX.has_assoc_Field is True
    assert ZZ.has_assoc_Field is True
    assert QQ.has_assoc_Field is True
    assert RR.has_assoc_Field is True
    assert ALG.has_assoc_Field is True
    assert ZZ[x].has_assoc_Field is True
    assert QQ[x].has_assoc_Field is True
    assert ZZ[x, y].has_assoc_Field is True
    assert QQ[x, y].has_assoc_Field is True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    assert RR.get_field() == RR
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
    assert QQ[x, y].get_field() == QQ.frac_field(x, y)
示例#8
0
def test_construct_domain():
    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([1, 2, 3],
                            field=True) == (QQ, [QQ(1), QQ(2),
                                                 QQ(3)])

    assert construct_domain([Integer(1), Integer(2),
                             Integer(3)]) == (ZZ, [ZZ(1), ZZ(2),
                                                   ZZ(3)])
    assert construct_domain(
        [Integer(1), Integer(2), Integer(3)],
        field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([Rational(1, 2),
                             Integer(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    result = construct_domain([3.14, 1, Rational(1, 2)])
    assert isinstance(result[0], RealField)
    assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]

    assert construct_domain([3.14, sqrt(2)],
                            extension=None) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])
    assert construct_domain([3.14, sqrt(2)],
                            extension=True) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])
    assert construct_domain([sqrt(2), 3.14],
                            extension=True) == (EX, [EX(sqrt(2)),
                                                     EX(3.14)])

    assert construct_domain([1, sqrt(2)],
                            extension=None) == (EX, [EX(1), EX(sqrt(2))])

    assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
    assert construct_domain([x, sqrt(x), sqrt(y)
                             ]) == (EX, [EX(x),
                                         EX(sqrt(x)),
                                         EX(sqrt(y))])

    alg = QQ.algebraic_field(sqrt(2))

    assert construct_domain([7, Rational(1, 2), sqrt(2)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(Rational(1, 2)), alg.convert(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])

    dom = ZZ[x]

    assert construct_domain([2*x, 3]) == \
        (dom, [dom.convert(2*x), dom.convert(3)])

    dom = ZZ[x, y]

    assert construct_domain([2*x, 3*y]) == \
        (dom, [dom.convert(2*x), dom.convert(3*y)])

    dom = QQ[x]

    assert construct_domain([x/2, 3]) == \
        (dom, [dom.convert(x/2), dom.convert(3)])

    dom = QQ[x, y]

    assert construct_domain([x/2, 3*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3*y)])

    dom = RR[x]

    assert construct_domain([x/2, 3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5)])

    dom = RR[x, y]

    assert construct_domain([x/2, 3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5*y)])

    dom = ZZ.frac_field(x)

    assert construct_domain([2/x, 3]) == \
        (dom, [dom.convert(2/x), dom.convert(3)])

    dom = ZZ.frac_field(x, y)

    assert construct_domain([2/x, 3*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3*y)])

    dom = RR.frac_field(x)

    assert construct_domain([2/x, 3.5]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5)])

    dom = RR.frac_field(x, y)

    assert construct_domain([2/x, 3.5*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5*y)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))

    assert construct_domain({}) == (ZZ, {})
示例#9
0
def test_RealField_from_diofant():
    assert RR.convert(Integer(0)) == RR.dtype(0)
    assert RR.convert(Float(0.0)) == RR.dtype(0.0)
    assert RR.convert(Integer(1)) == RR.dtype(1)
    assert RR.convert(Float(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    assert RR.convert(oo) == RR("+inf")
    assert RR.convert(-oo) == RR("-inf")
    pytest.raises(CoercionFailed, lambda: RR.convert(x))
示例#10
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == ZZ
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ[x]) == ZZ[x]
    assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == ZZ
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ[x]) == ZZ[x]
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ[x]) == QQ[x]
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ[x]) == RR[x]
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ[x]) == CC[x]
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    assert unify(ZZ[x], F3) == ZZ[x]
    assert unify(ZZ[x], ZZ) == ZZ[x]
    assert unify(ZZ[x], QQ) == QQ[x]
    assert unify(ZZ[x], ALG) == ALG[x]
    assert unify(ZZ[x], RR) == RR[x]
    assert unify(ZZ[x], CC) == CC[x]
    assert unify(ZZ[x], ZZ[x]) == ZZ[x]
    assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ[x], EX) == EX

    assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ[x]) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX
示例#11
0
def test_dmp_factor_list():
    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(0) == (ZZ(0), [])
    assert R.dmp_factor_list(7) == (7, [])

    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(0) == (QQ(0), [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(7) == (ZZ(7), [])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list_include(0) == [(0, 1)]
    assert R.dmp_factor_list_include(7) == [(7, 1)]

    R, *X = ring("x:200", ZZ)

    f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    R, x = ring("x", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x = ring("x", QQ)
    assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    f = 4 * x**2 * y + 4 * x * y**2

    assert R.dmp_factor_list(f) == \
        (4, [(y, 1),
             (x, 1),
             (x + y, 1)])

    assert R.dmp_factor_list_include(f) == \
        [(4*y, 1),
         (x, 1),
         (x + y, 1)]

    R, x, y = ring("x,y", QQ)
    f = QQ(1, 2) * x**2 * y + QQ(1, 2) * x * y**2

    assert R.dmp_factor_list(f) == \
        (QQ(1, 2), [(y, 1),
                    (x, 1),
                    (x + y, 1)])

    R, x, y = ring("x,y", RR)
    f = 2.0 * x**2 - 8.0 * y**2

    assert R.dmp_factor_list(f) == \
        (RR(2.0), [(1.0*x - 2.0*y, 1),
                   (1.0*x + 2.0*y, 1)])

    f = 6.7225336055071 * x**2 * y**2 - 10.6463972754741 * x * y - 0.33469524022264
    coeff, factors = R.dmp_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    # issue diofant/diofant#238
    R, x, y, z = ring("x,y,z", RR)
    f = x * y + x * z + 0.1 * y + 0.1 * z
    assert R.dmp_factor_list(f) == (10.0, [(0.1 * y + 0.1 * z, 1),
                                           (x + 0.1, 1)])

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dmp_factor_list(f) == \
        (4*t, [(x, 1),
             (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    f = QQ(1, 2) * t * x**2 + QQ(1, 2) * t**2 * x

    assert R.dmp_factor_list(f) == \
        (QQ(1, 2)*t, [(x, 1),
                    (x + t, 1)])

    R, x, y = ring("x,y", FF(2))
    pytest.raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2))

    R, x, y = ring("x,y", EX)
    pytest.raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
示例#12
0
def test_dup_factor_list():
    R, x = ring("x", ZZ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ['t'])
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ['t'])
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ)
    assert R.dup_factor_list_include(0) == [(0, 1)]
    assert R.dup_factor_list_include(7) == [(7, 1)]

    assert R.dup_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    assert R.dup_factor_list_include(x**2 + 2 * x + 1) == [(x + 1, 2)]
    # issue sympy/sympy#8037
    assert R.dup_factor_list(6 * x**2 - 5 * x - 6) == (1, [(2 * x - 3, 1),
                                                           (3 * x + 2, 1)])

    R, x = ring("x", QQ)
    assert R.dup_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x = ring("x", FF(2))
    assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)])

    R, x = ring("x", RR)
    assert R.dup_factor_list(1.0 * x**2 + 2.0 * x + 1.0) == (1.0, [
        (1.0 * x + 1.0, 2)
    ])
    assert R.dup_factor_list(2.0 * x**2 + 4.0 * x + 2.0) == (2.0, [
        (1.0 * x + 1.0, 2)
    ])

    f = 6.7225336055071 * x**2 - 10.6463972754741 * x - 0.33469524022264
    coeff, factors = R.dup_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    # issue diofant/diofant#238
    f = 0.1 * x**2 + 1.1 * x + 1.0
    assert R.dup_factor_list(f) == (10.0, [(0.1 * x + 0.1, 1),
                                           (0.1 * x + 1.0, 1)])

    Rt, t = ring("t", ZZ)
    R, x = ring("x", Rt)

    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dup_factor_list(f) == \
        (4*t, [(x, 1),
             (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x = ring("x", Rt)

    f = QQ(1, 2) * t * x**2 + QQ(1, 2) * t**2 * x

    assert R.dup_factor_list(f) == \
        (QQ(1, 2)*t, [(x, 1),
                    (x + t, 1)])

    R, x = ring("x", QQ.algebraic_field(I))

    def anp(element):
        return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)

    f = anp([QQ(1, 1)]) * x**4 + anp([QQ(2, 1)]) * x**2

    assert R.dup_factor_list(f) == \
        (anp([QQ(1, 1)]), [(anp([QQ(1, 1)])*x, 2),
                           (anp([QQ(1, 1)])*x**2 + anp([])*x + anp([QQ(2, 1)]), 1)])

    R, x = ring("x", EX)
    pytest.raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))