def random_poly(x, n, inf, sup, domain=ZZ, polys=False): """Return a polynomial of degree ``n`` with coefficients in ``[inf, sup]``. """ poly = Poly(dup_random(n, inf, sup, domain), x, domain=domain) if not polys: return poly.as_expr() else: return poly
def _minpoly_pow(ex, pw, x, dom, mp=None): """ Returns ``minpoly(ex**pw, x)`` Parameters ========== ex : algebraic element pw : rational number x : indeterminate of the polynomial dom: ground domain mp : minimal polynomial of ``p`` Examples ======== >>> from diofant import sqrt, QQ, Rational >>> from diofant.abc import x, y >>> p = sqrt(1 + sqrt(2)) >>> _minpoly_pow(p, 2, x, QQ) x**2 - 2*x - 1 >>> minpoly(p**2, x) x**2 - 2*x - 1 >>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y)) x**3 - y >>> minpoly(y**Rational(1, 3), x) x**3 - y """ pw = sympify(pw) if not mp: mp = _minpoly_compose(ex, x, dom) if not pw.is_rational: raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) if pw < 0: if mp == x: raise ZeroDivisionError('%s is zero' % ex) mp = _invertx(mp, x) if pw == -1: return mp pw = -pw ex = 1 / ex y = Dummy(str(x)) mp = mp.subs({x: y}) n, d = pw.as_numer_denom() res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom) _, factors = res.factor_list() res = _choose_factor(factors, x, ex**pw, dom) return res.as_expr()
def roots(f, *gens, **flags): """ Computes symbolic roots of a univariate polynomial. Given a univariate polynomial f with symbolic coefficients (or a list of the polynomial's coefficients), returns a dictionary with its roots and their multiplicities. Only roots expressible via radicals will be returned. To get a complete set of roots use RootOf class or numerical methods instead. By default cubic and quartic formulas are used in the algorithm. To disable them because of unreadable output set ``cubics=False`` or ``quartics=False`` respectively. If cubic roots are real but are expressed in terms of complex numbers (casus irreducibilis [1]) the ``trig`` flag can be set to True to have the solutions returned in terms of cosine and inverse cosine functions. To get roots from a specific domain set the ``filter`` flag with one of the following specifiers: Z, Q, R, I, C. By default all roots are returned (this is equivalent to setting ``filter='C'``). By default a dictionary is returned giving a compact result in case of multiple roots. However to get a list containing all those roots set the ``multiple`` flag to True; the list will have identical roots appearing next to each other in the result. (For a given Poly, the all_roots method will give the roots in sorted numerical order.) Examples ======== >>> from diofant import Poly, roots, sqrt >>> from diofant.abc import x, y >>> roots(x**2 - 1, x) == {-1: 1, 1: 1} True >>> p = Poly(x**2-1, x) >>> roots(p) == {-1: 1, 1: 1} True >>> p = Poly(x**2-y, x, y) >>> roots(Poly(p, x)) == {-sqrt(y): 1, sqrt(y): 1} True >>> roots(x**2 - y, x) == {-sqrt(y): 1, sqrt(y): 1} True >>> roots([1, 0, -1]) == {-1: 1, 1: 1} True References ========== .. [1] http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method """ from diofant.polys.polytools import to_rational_coeffs flags = dict(flags) auto = flags.pop('auto', True) cubics = flags.pop('cubics', True) trig = flags.pop('trig', False) quartics = flags.pop('quartics', True) quintics = flags.pop('quintics', False) multiple = flags.pop('multiple', False) filter = flags.pop('filter', None) predicate = flags.pop('predicate', None) if isinstance(f, list): if gens: raise ValueError('redundant generators given') x = Dummy('x') poly, i = {}, len(f) - 1 for coeff in f: poly[i], i = sympify(coeff), i - 1 f = Poly(poly, x, field=True) else: try: f = Poly(f, *gens, **flags) if f.length == 2 and f.degree() != 1: # check for foo**n factors in the constant n = f.degree() npow_bases = [] expr = f.as_expr() con = expr.as_independent(*gens)[0] for p in Mul.make_args(con): if p.is_Pow and not p.exp % n: npow_bases.append(p.base**(p.exp/n)) else: other.append(p) if npow_bases: b = Mul(*npow_bases) B = Dummy() d = roots(Poly(expr - con + B**n*Mul(*others), *gens, **flags), *gens, **flags) rv = {} for k, v in d.items(): rv[k.subs(B, b)] = v return rv except GeneratorsNeeded: if multiple: return [] else: return {} if f.is_multivariate: raise PolynomialError('multivariate polynomials are not supported') def _update_dict(result, root, k): if root in result: result[root] += k else: result[root] = k def _try_decompose(f): """Find roots using functional decomposition. """ factors, roots = f.decompose(), [] for root in _try_heuristics(factors[0]): roots.append(root) for factor in factors[1:]: previous, roots = list(roots), [] for root in previous: g = factor - Poly(root, f.gen) for root in _try_heuristics(g): roots.append(root) return roots def _try_heuristics(f): """Find roots using formulas and some tricks. """ if f.is_ground: return [] if f.is_monomial: return [Integer(0)]*f.degree() if f.length() == 2: if f.degree() == 1: return list(map(cancel, roots_linear(f))) else: return roots_binomial(f) result = [] for i in [-1, 1]: if not f.eval(i): f = f.quo(Poly(f.gen - i, f.gen)) result.append(i) break n = f.degree() if n == 1: result += list(map(cancel, roots_linear(f))) elif n == 2: result += list(map(cancel, roots_quadratic(f))) elif f.is_cyclotomic: result += roots_cyclotomic(f) elif n == 3 and cubics: result += roots_cubic(f, trig=trig) elif n == 4 and quartics: result += roots_quartic(f) elif n == 5 and quintics: result += roots_quintic(f) return result (k,), f = f.terms_gcd() if not k: zeros = {} else: zeros = {Integer(0): k} coeff, f = preprocess_roots(f) if auto and f.get_domain().has_Ring: f = f.to_field() rescale_x = None translate_x = None result = {} if not f.is_ground: if not f.get_domain().is_Exact: for r in f.nroots(): _update_dict(result, r, 1) elif f.degree() == 1: result[roots_linear(f)[0]] = 1 elif f.length() == 2: roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial for r in roots_fun(f): _update_dict(result, r, 1) else: _, factors = Poly(f.as_expr()).factor_list() if len(factors) == 1 and f.degree() == 2: for r in roots_quadratic(f): _update_dict(result, r, 1) else: if len(factors) == 1 and factors[0][1] == 1: if f.get_domain().is_EX: res = to_rational_coeffs(f) if res: if res[0] is None: translate_x, f = res[2:] else: rescale_x, f = res[1], res[-1] result = roots(f) if not result: for root in _try_decompose(f): _update_dict(result, root, 1) else: for root in _try_decompose(f): _update_dict(result, root, 1) else: for factor, k in factors: for r in _try_heuristics(Poly(factor, f.gen, field=True)): _update_dict(result, r, k) if coeff is not S.One: _result, result, = result, {} for root, k in _result.items(): result[coeff*root] = k result.update(zeros) if filter not in [None, 'C']: handlers = { 'Z': lambda r: r.is_Integer, 'Q': lambda r: r.is_Rational, 'R': lambda r: r.is_extended_real, 'I': lambda r: r.is_imaginary, } try: query = handlers[filter] except KeyError: raise ValueError("Invalid filter: %s" % filter) for zero in dict(result).keys(): if not query(zero): del result[zero] if predicate is not None: for zero in dict(result).keys(): if not predicate(zero): del result[zero] if rescale_x: result1 = {} for k, v in result.items(): result1[k*rescale_x] = v result = result1 if translate_x: result1 = {} for k, v in result.items(): result1[k + translate_x] = v result = result1 if not multiple: return result else: zeros = [] for zero in ordered(result): zeros.extend([zero]*result[zero]) return zeros