示例#1
0
def test_contraction_structure_Mul_and_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j, k = Idx('i'), Idx('j'), Idx('k')

    i_ji = x[i]**(y[j] * x[i])
    assert get_contraction_structure(i_ji) == {None: {i_ji}}
    ij_i = (x[i] * y[j])**(y[i])
    assert get_contraction_structure(ij_i) == {None: {ij_i}}
    j_ij_i = x[j] * (x[i] * y[j])**(y[i])
    assert get_contraction_structure(j_ij_i) == {(j, ): {j_ij_i}}
    j_i_ji = x[j] * x[i]**(y[j] * x[i])
    assert get_contraction_structure(j_i_ji) == {(j, ): {j_i_ji}}
    ij_exp_kki = x[i] * y[j] * exp(y[i] * y[k, k])
    result = get_contraction_structure(ij_exp_kki)
    expected = {
        (i, ): {ij_exp_kki},
        ij_exp_kki: [{
            None: {exp(y[i] * y[k, k])},
            exp(y[i] * y[k, k]): [{
                None: {y[i] * y[k, k]},
                y[i] * y[k, k]: [{
                    (k, ): {y[k, k]}
                }]
            }]
        }]
    }
    assert result == expected
示例#2
0
def test_ufunc_support():
    f = Function('f')
    g = Function('g')
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    a = symbols('a')

    assert get_indices(f(x[i])) == ({i}, {})
    assert get_indices(f(x[i], y[j])) == ({i, j}, {})
    assert get_indices(f(y[i]) * g(x[i])) == (set(), {})
    assert get_indices(f(a, x[i])) == ({i}, {})
    assert get_indices(f(a, y[i], x[j]) * g(x[i])) == ({j}, {})
    assert get_indices(g(f(x[i]))) == ({i}, {})

    assert get_contraction_structure(f(x[i])) == {None: {f(x[i])}}
    assert get_contraction_structure(f(y[i]) * g(x[i])) == {
        (i, ): {f(y[i]) * g(x[i])}
    }
    assert get_contraction_structure(f(y[i]) * g(f(x[i]))) == {
        (i, ): {f(y[i]) * g(f(x[i]))}
    }
    assert get_contraction_structure(f(x[j], y[i]) * g(x[i])) == {
        (i, ): {f(x[j], y[i]) * g(x[i])}
    }
示例#3
0
def test_get_contraction_structure_complex():
    x = IndexedBase('x')
    y = IndexedBase('y')
    A = IndexedBase('A')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    expr1 = y[i] + A[i, j] * x[j]
    d1 = {None: {y[i]}, (j, ): {A[i, j] * x[j]}}
    assert get_contraction_structure(expr1) == d1
    expr2 = expr1 * A[k, i] + x[k]
    d2 = {None: {x[k]}, (i, ): {expr1 * A[k, i]}, expr1 * A[k, i]: [d1]}
    assert get_contraction_structure(expr2) == d2
示例#4
0
def test_get_contraction_structure_basic():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    assert get_contraction_structure(x[i] * y[j]) == {None: {x[i] * y[j]}}
    assert get_contraction_structure(x[i] + y[j]) == {None: {x[i], y[j]}}
    assert get_contraction_structure(x[i] * y[i]) == {(i, ): {x[i] * y[i]}}
    assert get_contraction_structure(1 + x[i] * y[i]) == {
        None: {S.One},
        (i, ): {x[i] * y[i]}
    }
    assert get_contraction_structure(x[i]**y[i]) == {None: {x[i]**y[i]}}
示例#5
0
def test_contraction_structure_simple_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    ii_jj = x[i, i]**y[j, j]
    assert get_contraction_structure(ii_jj) == {
        None: {ii_jj},
        ii_jj: [{
            (i, ): {x[i, i]}
        }, {
            (j, ): {y[j, j]}
        }]
    }
示例#6
0
def test_get_indices_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    A = IndexedBase('A')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    assert get_indices(Pow(x[i], y[j])) == ({i, j}, {})
    assert get_indices(Pow(x[i, k], y[j, k])) == ({i, j, k}, {})
    assert get_indices(Pow(A[i, k], y[k] + A[k, j] * x[j])) == ({i, k}, {})
    assert get_indices(Pow(2, x[i])) == get_indices(exp(x[i]))

    # test of a design decision, this may change:
    assert get_indices(Pow(x[i], 2)) == ({
        i,
    }, {})
示例#7
0
def test_contraction_structure_Add_in_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    s_ii_jj_s = (1 + x[i, i])**(1 + y[j, j])
    expected = {
        None: {s_ii_jj_s},
        s_ii_jj_s: [{
            None: {S.One},
            (i, ): {x[i, i]}
        }, {
            None: {S.One},
            (j, ): {y[j, j]}
        }]
    }
    result = get_contraction_structure(s_ii_jj_s)
    assert result == expected
示例#8
0
def test_get_contraction_structure_basic():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    f = Function('f')
    assert get_contraction_structure(x[i] * y[j]) == {None: {x[i] * y[j]}}
    assert get_contraction_structure(x[i] + y[j]) == {None: {x[i], y[j]}}
    assert get_contraction_structure(x[i] * y[i]) == {(i, ): {x[i] * y[i]}}
    assert get_contraction_structure(1 + x[i] * y[i]) == {
        None: {1},
        (i, ): {x[i] * y[i]}
    }
    assert get_contraction_structure(x[i]**y[i]) == {None: {x[i]**y[i]}}
    assert (get_contraction_structure(f(x[i, i])) == {
        None: {f(x[i, i])},
        f(x[i, i]): [{
            (i, ): {x[i, i]}
        }]
    })
示例#9
0
def test_get_indices_add():
    x = IndexedBase('x')
    y = IndexedBase('y')
    A = IndexedBase('A')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    assert get_indices(x[i] + 2 * y[i]) == ({
        i,
    }, {})
    assert get_indices(y[i] + 2 * A[i, j] * x[j]) == ({
        i,
    }, {})
    assert get_indices(y[i] + 2 * (x[i] + A[i, j] * x[j])) == ({
        i,
    }, {})
    assert get_indices(y[i] + x[i] * (A[j, j] + 1)) == ({
        i,
    }, {})
    assert get_indices(y[i] + x[i] * x[j] * (y[j] + A[j, k] * x[k])) == ({
        i,
    }, {})
示例#10
0
def test_contraction_structure_Pow_in_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    z = IndexedBase('z')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    ii_jj_kk = x[i, i]**y[j, j]**z[k, k]
    expected = {
        None: {ii_jj_kk},
        ii_jj_kk: [{
            (i, ): {x[i, i]}
        }, {
            None: {y[j, j]**z[k, k]},
            y[j, j]**z[k, k]: [{
                (j, ): {y[j, j]}
            }, {
                (k, ): {z[k, k]}
            }]
        }]
    }
    assert get_contraction_structure(ii_jj_kk) == expected
示例#11
0
def test_scalar_broadcast():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    assert get_indices(x[i] + y[i, i]) == ({i}, {})
示例#12
0
def test_get_indices_exceptions():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    pytest.raises(IndexConformanceException, lambda: get_indices(x[i] + y[j]))
示例#13
0
def test_get_indices_mul():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    assert get_indices(x[j] * y[i]) == ({i, j}, {})
    assert get_indices(x[i] * y[j]) == ({i, j}, {})
示例#14
0
def test_get_indices_Indexed():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    assert get_indices(x[i, j]) == ({i, j}, {})
    assert get_indices(x[j, i]) == ({j, i}, {})
示例#15
0
def ufuncify(args,
             expr,
             language=None,
             backend='numpy',
             tempdir=None,
             flags=None,
             verbose=False,
             helpers=None):
    """
    Generates a binary function that supports broadcasting on numpy arrays.

    Parameters
    ----------

    args : iterable
        Either a Symbol or an iterable of symbols. Specifies the argument
        sequence for the function.
    expr
        A Diofant expression that defines the element wise operation.
    language : string, optional
        If supplied, (options: 'C' or 'F95'), specifies the language of the
        generated code. If ``None`` [default], the language is inferred based
        upon the specified backend.
    backend : string, optional
        Backend used to wrap the generated code. Either 'numpy' [default],
        'cython', or 'f2py'.
    tempdir : string, optional
        Path to directory for temporary files. If this argument is supplied,
        the generated code and the wrapper input files are left intact in the
        specified path.
    flags : iterable, optional
        Additional option flags that will be passed to the backend
    verbose : bool, optional
        If True, autowrap will not mute the command line backends. This can be
        helpful for debugging.
    helpers : iterable, optional
        Used to define auxillary expressions needed for the main expr. If the
        main expression needs to call a specialized function it should be put
        in the ``helpers`` iterable. Autowrap will then make sure that the
        compiled main expression can link to the helper routine. Items should
        be tuples with (<funtion_name>, <diofant_expression>, <arguments>). It
        is mandatory to supply an argument sequence to helper routines.

    Notes
    -----

    The default backend ('numpy') will create actual instances of
    ``numpy.ufunc``. These support ndimensional broadcasting, and implicit type
    conversion. Use of the other backends will result in a "ufunc-like"
    function, which requires equal length 1-dimensional arrays for all
    arguments, and will not perform any type conversions.

    References
    ----------

    .. [1] http://docs.scipy.org/doc/numpy/reference/ufuncs.html

    Examples
    --------

    >>> from diofant.utilities.autowrap import ufuncify
    >>> from diofant.abc import x, y
    >>> import numpy as np
    >>> f = ufuncify((x, y), y + x**2)
    >>> type(f) is np.ufunc
    True
    >>> f([1, 2, 3], 2)
    array([ 3.,  6.,  11.])
    >>> f(np.arange(5), 3)
    array([ 3.,  4.,  7.,  12.,  19.])

    For the F2Py and Cython backends, inputs are required to be equal length
    1-dimensional arrays. The F2Py backend will perform type conversion, but
    the Cython backend will error if the inputs are not of the expected type.

    >>> f_fortran = ufuncify((x, y), y + x**2, backend='F2Py')
    >>> f_fortran(1, 2)
    3
    >>> f_fortran(numpy.array([1, 2, 3]), numpy.array([1.0, 2.0, 3.0]))
    array([2.,  6.,  12.])
    >>> f_cython = ufuncify((x, y), y + x**2, backend='Cython')
    >>> f_cython(1, 2)
    Traceback (most recent call last):
    ...
    TypeError: Argument '_x' has incorrect type (expected numpy.ndarray, got int)
    >>> f_cython(numpy.array([1.0]), numpy.array([2.0]))
    array([ 3.])
    """

    if isinstance(args, (Dummy, Symbol)):
        args = (args, )
    else:
        args = tuple(args)

    if language:
        _validate_backend_language(backend, language)
    else:
        language = _infer_language(backend)

    helpers = helpers if helpers else ()
    flags = flags if flags else ()

    if backend.upper() == 'NUMPY':
        routine = make_routine('autofunc', expr, args)
        helps = []
        for name, expr, args in helpers:
            helps.append(make_routine(name, expr, args))
        code_wrapper = UfuncifyCodeWrapper(CCodeGen("ufuncify"), tempdir,
                                           flags, verbose)
        return code_wrapper.wrap_code(routine, helpers=helps)
    else:
        # Dummies are used for all added expressions to prevent name clashes
        # within the original expression.
        y = IndexedBase(Dummy())
        m = Dummy(integer=True)
        i = Idx(Dummy(integer=True), m)
        f = implemented_function(Dummy().name, Lambda(args, expr))
        # For each of the args create an indexed version.
        indexed_args = [IndexedBase(Dummy(str(a))) for a in args]
        # Order the arguments (out, args, dim)
        args = [y] + indexed_args + [m]
        args_with_indices = [a[i] for a in indexed_args]
        return autowrap(Eq(y[i], f(*args_with_indices)), language, backend,
                        tempdir, tuple(args), flags, verbose, helpers)