def test_gruntz_eval_special(): # Gruntz, p. 126 assert gruntz( exp(x) * (sin(1 / x + exp(-x)) - sin(1 / x + exp(-x**2))), x) == 1 assert gruntz((erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x**2), x) == -2 / sqrt(pi) assert gruntz( exp(exp(x)) * (exp(sin(1 / x + exp(-exp(x)))) - exp(sin(1 / x))), x) == 1 assert gruntz(exp(x) * (gamma(x + exp(-x)) - gamma(x)), x) == oo assert gruntz(exp(exp(digamma(digamma(x)))) / x, x) == exp(-Rational(1, 2)) assert gruntz(exp(exp(digamma(log(x)))) / x, x) == exp(-Rational(1, 2)) assert gruntz(digamma(digamma(digamma(x))), x) == oo assert gruntz(loggamma(loggamma(x)), x) == oo assert gruntz( ((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x) - cos(1 / x)) * x * log(x), x) == -Rational(1, 2) assert gruntz(x * (gamma(x - 1/gamma(x)) - gamma(x) + log(x)), x) \ == Rational(1, 2) assert gruntz((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x), x) == 1 assert gruntz( gamma(x + 1) / sqrt(2 * pi) - exp(-x) * (x**(x + Rational(1, 2)) + x**(x - Rational(1, 2)) / 12), x) == oo assert gruntz(exp(exp(exp(digamma(digamma(digamma(x)))))) / x, x) == 0 assert gruntz(exp(gamma(x - exp(-x)) * exp(1 / x)) - exp(gamma(x)), x) == oo assert gruntz((Ei(x - exp(-exp(x))) - Ei(x)) * exp(-x) * exp(exp(x)) * x, x) == -1 assert gruntz(exp((log(2) + 1) * x) * (zeta(x + exp(-x)) - zeta(x)), x) == -log(2)
def test_intractable(): assert limit(1/gamma(x), x, oo) == 0 assert limit(1/loggamma(x), x, oo) == 0 assert limit(gamma(x)/loggamma(x), x, oo) == oo assert limit(exp(gamma(x))/gamma(x), x, oo) == oo assert limit(gamma(3 + 1/x), x, oo) == 2 assert limit(gamma(Rational(1, 7) + 1/x), x, oo) == gamma(Rational(1, 7)) assert limit(log(x**x)/log(gamma(x)), x, oo) == 1 assert limit(log(gamma(gamma(x)))/exp(x), x, oo) == oo assert limit(acosh(1 + 1/x)*sqrt(x), x, oo) == sqrt(2) # issue sympy/sympy#10804 assert limit(2*airyai(x)*root(x, 4) * exp(2*x**Rational(3, 2)/3), x, oo) == 1/sqrt(pi) assert limit(airybi(x)*root(x, 4) * exp(-2*x**Rational(3, 2)/3), x, oo) == 1/sqrt(pi) assert limit(airyai(1/x), x, oo) == (3**Rational(5, 6) * gamma(Rational(1, 3))/(6*pi)) assert limit(airybi(1/x), x, oo) == cbrt(3)*gamma(Rational(1, 3))/(2*pi) assert limit(airyai(2 + 1/x), x, oo) == airyai(2) assert limit(airybi(2 + 1/x), x, oo) == airybi(2) # issue sympy/sympy#10976 assert limit(erf(m/x)/erf(1/x), x, oo) == m assert limit(Max(x**2, x, exp(x))/x, x, oo) == oo
def test_branch_bug(): assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \ -z**Rational(1, 3)*lowergamma(exp_polar(I*pi)/3, z)/5 \ + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z)) assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \ 2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
def test_branch_bug(): # TODO combsimp cannot prove that the factor is unity assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x), polar=True) == 2*erf(x**3)*gamma(Rational(2, 3))/3/gamma(Rational(5, 3)) assert integrate(erf(x**3), x, meijerg=True) == \ 2*x*erf(x**3)*gamma(Rational(2, 3))/(3*gamma(Rational(5, 3))) \ - 2*gamma(Rational(2, 3))*lowergamma(Rational(2, 3), x**6)/(3*sqrt(pi)*gamma(Rational(5, 3)))
def test_branch_bug(): assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \ -cbrt(z)*lowergamma(exp_polar(I*pi)/3, z)/5 \ + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z)) assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \ 2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
def test_erfc(): assert erfc(nan) == nan assert erfc(oo) == 0 assert erfc(-oo) == 2 assert erfc(0) == 1 assert erfc(I * oo) == -oo * I assert erfc(-I * oo) == oo * I assert erfc(-x) == Integer(2) - erfc(x) assert erfc(erfcinv(x)) == x assert erfc(erfinv(x)) == 1 - x assert erfc(I).is_extended_real is False assert erfc(w).is_extended_real is True assert erfc(z).is_extended_real is None assert conjugate(erfc(z)) == erfc(conjugate(z)) assert erfc(x).as_leading_term(x) == 1 assert erfc(1 / x).as_leading_term(x) == erfc(1 / x) assert erfc(z).rewrite('erf') == 1 - erf(z) assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z) assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite('hyper') == 1 - 2 * z * hyper( [Rational(1, 2)], [Rational(3, 2)], -z**2) / sqrt(pi) assert erfc(z).rewrite('meijerg') == 1 - z * meijerg( [Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi) assert erfc(z).rewrite( 'uppergamma') == 1 - sqrt(z**2) * erf(sqrt(z**2)) / z assert erfc(z).rewrite('expint') == 1 - sqrt(z**2) / z + z * expint( Rational(1, 2), z**2) / sqrt(pi) assert erfc(x).as_real_imag() == \ ((erfc(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 + erfc(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2, I*(erfc(re(x) - I*re(x)*abs(im(x))/abs(re(x))) - erfc(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) * re(x)*abs(im(x))/(2*im(x)*abs(re(x))))) assert erfc(x).as_real_imag(deep=False) == erfc(x).as_real_imag() assert erfc(w).as_real_imag() == (erfc(w), 0) assert erfc(w).as_real_imag(deep=False) == erfc(w).as_real_imag() assert erfc(I).as_real_imag() == (1, -erfi(1)) pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2)) assert erfc(x).taylor_term(3, x, *(-2 * x / sqrt(pi), 0)) == 2 * x**3 / 3 / sqrt(pi) assert erfc(x).limit(x, oo) == 0 assert erfc(x).diff(x) == -2 * exp(-x**2) / sqrt(pi)
def test_sympyissue_4890(): z = Symbol('z', positive=True) assert integrate(exp(-log(x)**2), x) == \ sqrt(pi)*exp(Rational(1, 4))*erf(log(x)-Rational(1, 2))/2 assert integrate(exp(log(x)**2), x) == \ sqrt(pi)*exp(-Rational(1, 4))*erfi(log(x)+Rational(1, 2))/2 assert integrate(exp(-z*log(x)**2), x) == \ sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z))
def test_erfi(): assert erfi(nan) == nan assert erfi(+oo) == +oo assert erfi(-oo) == -oo assert erfi(0) == 0 assert erfi(I * oo) == I assert erfi(-I * oo) == -I assert erfi(-x) == -erfi(x) assert erfi(I * erfinv(x)) == I * x assert erfi(I * erfcinv(x)) == I * (1 - x) assert erfi(I * erf2inv(0, x)) == I * x assert erfi(I).is_extended_real is False assert erfi(w).is_extended_real is True assert erfi(z).is_extended_real is None assert conjugate(erfi(z)) == erfi(conjugate(z)) assert erfi(z).rewrite('erf') == -I * erf(I * z) assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I assert erfi(z).rewrite('fresnels') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('fresnelc') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('hyper') == 2 * z * hyper( [Rational(1, 2)], [Rational(3, 2)], z**2) / sqrt(pi) assert erfi(z).rewrite('meijerg') == z * meijerg( [Rational(1, 2)], [], [0], [Rational(-1, 2)], -z**2) / sqrt(pi) assert erfi(z).rewrite('uppergamma') == ( sqrt(-z**2) / z * (uppergamma(Rational(1, 2), -z**2) / sqrt(pi) - 1)) assert erfi(z).rewrite('expint') == sqrt(-z**2) / z - z * expint( Rational(1, 2), -z**2) / sqrt(pi) assert erfi(x).as_real_imag() == \ ((erfi(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 + erfi(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2, I*(erfi(re(x) - I*re(x)*abs(im(x))/abs(re(x))) - erfi(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) * re(x)*abs(im(x))/(2*im(x)*abs(re(x))))) assert erfi(x).as_real_imag(deep=False) == erfi(x).as_real_imag() assert erfi(w).as_real_imag() == (erfi(w), 0) assert erfi(w).as_real_imag(deep=False) == erfi(w).as_real_imag() assert erfi(I).as_real_imag() == (0, erf(1)) pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2)) assert erfi(x).taylor_term(3, x, *(2 * x / sqrt(pi), 0)) == 2 * x**3 / 3 / sqrt(pi) assert erfi(x).limit(x, oo) == oo
def test__erfs(): assert _erfs(z).diff(z) == -2/sqrt(S.Pi) + 2*z*_erfs(z) assert _erfs(1/z).series(z) == \ z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6) assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) \ == erf(z).diff(z) assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2)
def test_risch_option(): # risch=True only allowed on indefinite integrals pytest.raises(ValueError, lambda: integrate(1 / log(x), (x, 0, oo), risch=True)) assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x) assert integrate(log(1 / x) * y, x, y, risch=True) == y**2 * (x * log(1 / x) / 2 + x / 2) assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
def test__erfs(): assert _erfs(z).diff(z) == -2/sqrt(pi) + 2*z*_erfs(z) pytest.raises(ArgumentIndexError, lambda: _erfs(x).fdiff(2)) assert _erfs(1/z).series(z) == \ z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6) assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) \ == erf(z).diff(z) assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2)
def test__erfs(): assert _erfs(z).diff(z) == -2 / sqrt(pi) + 2 * z * _erfs(z) pytest.raises(ArgumentIndexError, lambda: _erfs(x).fdiff(2)) assert _erfs(1/z).series(z) == \ z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6) assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) \ == erf(z).diff(z) assert _erfs(z).rewrite('intractable') == (-erf(z) + 1) * exp(z**2)
def test_erfinv(): assert erfinv(0) == 0 assert erfinv(1) == S.Infinity assert erfinv(nan) == S.NaN assert erfinv(erf(w)) == w assert erfinv(erf(-w)) == -w assert erfinv(x).diff() == sqrt(pi)*exp(erfinv(x)**2)/2 assert erfinv(z).rewrite('erfcinv') == erfcinv(1-z)
def test_risch_option(): # risch=True only allowed on indefinite integrals pytest.raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True)) assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x) assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2) assert integrate(erf(x), x, risch=True) == Integral(erf(x), x) # TODO: How to test risch=False? # issue sympy/sympy#2708 f = 1/(a + z + log(z)) integral_f = NonElementaryIntegral(f, (z, 2, 3)) assert Integral(f, (z, 2, 3)).doit() == integral_f
def test_erf_f_code(): routine = make_routine("test", erf(x) - erf(-2 * x)) code_gen = FCodeGen() source = get_string(code_gen.dump_f95, [routine]) expected = ( "REAL*8 function test(x)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "test = erf(x) + erf(2.0d0*x)\n" "end function\n" ) assert source == expected, source
def test_erfc(): assert erfc(nan) == nan assert erfc(oo) == 0 assert erfc(-oo) == 2 assert erfc(0) == 1 assert erfc(I*oo) == -oo*I assert erfc(-I*oo) == oo*I assert erfc(-x) == Integer(2) - erfc(x) assert erfc(erfcinv(x)) == x assert erfc(erfinv(x)) == 1 - x assert erfc(I).is_extended_real is False assert erfc(w).is_extended_real is True assert erfc(z).is_extended_real is None assert conjugate(erfc(z)) == erfc(conjugate(z)) assert erfc(x).as_leading_term(x) == 1 assert erfc(1/x).as_leading_term(x) == erfc(1/x) assert erfc(z).rewrite('erf') == 1 - erf(z) assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z) assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], -z**2)/sqrt(pi) assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi) assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*erf(sqrt(z**2))/z assert erfc(z).rewrite('expint') == 1 - sqrt(z**2)/z + z*expint(Rational(1, 2), z**2)/sqrt(pi) assert erfc(x).as_real_imag() == \ ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) assert erfc(x).as_real_imag(deep=False) == erfc(x).as_real_imag() assert erfc(w).as_real_imag() == (erfc(w), 0) assert erfc(w).as_real_imag(deep=False) == erfc(w).as_real_imag() assert erfc(I).as_real_imag() == (1, -erfi(1)) pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2)) assert erfc(x).taylor_term(3, x, *(-2*x/sqrt(pi), 0)) == 2*x**3/3/sqrt(pi) assert erfc(x).limit(x, oo) == 0 assert erfc(x).diff(x) == -2*exp(-x**2)/sqrt(pi)
def test_erfi(): assert erfi(nan) == nan assert erfi(+oo) == +oo assert erfi(-oo) == -oo assert erfi(0) == 0 assert erfi(I*oo) == I assert erfi(-I*oo) == -I assert erfi(-x) == -erfi(x) assert erfi(I*erfinv(x)) == I*x assert erfi(I*erfcinv(x)) == I*(1 - x) assert erfi(I*erf2inv(0, x)) == I*x assert erfi(I).is_extended_real is False assert erfi(w).is_extended_real is True assert erfi(z).is_extended_real is None assert conjugate(erfi(z)) == erfi(conjugate(z)) assert erfi(z).rewrite('erf') == -I*erf(I*z) assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) - I*fresnels(z*(1 + I)/sqrt(pi))) assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) - I*fresnels(z*(1 + I)/sqrt(pi))) assert erfi(z).rewrite('hyper') == 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], z**2)/sqrt(pi) assert erfi(z).rewrite('meijerg') == z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], -z**2)/sqrt(pi) assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(Rational(1, 2), -z**2)/sqrt(pi) - 1)) assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(Rational(1, 2), -z**2)/sqrt(pi) assert erfi(x).as_real_imag() == \ ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) assert erfi(x).as_real_imag(deep=False) == erfi(x).as_real_imag() assert erfi(w).as_real_imag() == (erfi(w), 0) assert erfi(w).as_real_imag(deep=False) == erfi(w).as_real_imag() assert erfi(I).as_real_imag() == (0, erf(1)) pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2)) assert erfi(x).taylor_term(3, x, *(2*x/sqrt(pi), 0)) == 2*x**3/3/sqrt(pi) assert erfi(x).limit(x, oo) == oo
def test_erfinv(): assert erfinv(0) == 0 assert erfinv(-1) == -oo assert erfinv(+1) == +oo assert erfinv(nan) == nan assert erfinv(erf(w)) == w assert erfinv(erf(-w)) == -w assert erfinv(x).diff() == sqrt(pi) * exp(erfinv(x)**2) / 2 assert erfinv(z).rewrite('erfcinv') == erfcinv(1 - z) pytest.raises(ArgumentIndexError, lambda: erfinv(x).fdiff(2))
def test_erfinv(): assert erfinv(0) == 0 assert erfinv(-1) == -oo assert erfinv(+1) == +oo assert erfinv(nan) == nan assert erfinv(erf(w)) == w assert erfinv(erf(-w)) == -w assert erfinv(x).diff() == sqrt(pi)*exp(erfinv(x)**2)/2 assert erfinv(z).rewrite('erfcinv') == erfcinv(1-z) pytest.raises(ArgumentIndexError, lambda: erfinv(x).fdiff(2))
def test_recursive(): a, b, c = symbols('a b c', positive=True) r = exp(-(x - a)**2)*exp(-(x - b)**2) e = integrate(r, (x, 0, oo), meijerg=True) assert simplify(e.expand()) == ( sqrt(2)*sqrt(pi)*( (erf(sqrt(2)*(a + b)/2) + 1)*exp(-a**2/2 + a*b - b**2/2))/4) e = integrate(exp(-(x - a)**2)*exp(-(x - b)**2)*exp(c*x), (x, 0, oo), meijerg=True) assert simplify(e) == ( sqrt(2)*sqrt(pi)*(erf(sqrt(2)*(2*a + 2*b + c)/4) + 1)*exp(-a**2 - b**2 + (2*a + 2*b + c)**2/8)/4) assert simplify(integrate(exp(-(x - a - b - c)**2), (x, 0, oo), meijerg=True)) == \ sqrt(pi)/2*(1 + erf(a + b + c)) assert simplify(integrate(exp(-(x + a + b + c)**2), (x, 0, oo), meijerg=True)) == \ sqrt(pi)/2*(1 - erf(a + b + c))
def test_erfc(): assert erfc(nan) == nan assert erfc(oo) == 0 assert erfc(-oo) == 2 assert erfc(0) == 1 assert erfc(I * oo) == -oo * I assert erfc(-I * oo) == oo * I assert erfc(-x) == Integer(2) - erfc(x) assert erfc(erfcinv(x)) == x assert erfc(I).is_extended_real is False assert erfc(w).is_extended_real is True assert erfc(z).is_extended_real is None assert conjugate(erfc(z)) == erfc(conjugate(z)) assert erfc(x).as_leading_term(x) == S.One assert erfc(1 / x).as_leading_term(x) == erfc(1 / x) assert erfc(z).rewrite('erf') == 1 - erf(z) assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z) assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * ( fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z * (1 - I) / sqrt(pi))) assert erfc(z).rewrite( 'hyper') == 1 - 2 * z * hyper([S.Half], [3 * S.Half], -z**2) / sqrt(pi) assert erfc(z).rewrite('meijerg') == 1 - z * meijerg( [S.Half], [], [0], [-S.Half], z**2) / sqrt(pi) assert erfc(z).rewrite( 'uppergamma') == 1 - sqrt(z**2) * erf(sqrt(z**2)) / z assert erfc(z).rewrite('expint') == S.One - sqrt(z**2) / z + z * expint( S.Half, z**2) / sqrt(S.Pi) assert erfc(x).as_real_imag() == \ ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))
def test_sympyissue_7383(): x, z, R, a = symbols('x z R a') r = sqrt(x**2 + z**2) u = erf(a * r / sqrt(2)) / r Ec = u.diff(z, z).subs({x: sqrt(R * R - z * z)}) assert integrate(Ec, (z, -R, R)).simplify() == \ -2*sqrt(2)*R*a**3*exp(-R**2*a**2/2)/(3*sqrt(pi))
def test_heurisch_hacking(): assert (heurisch(sqrt(1 + 7 * x**2), x, hints=[]) == x * sqrt(1 + 7 * x**2) / 2 + sqrt(7) * asinh(sqrt(7) * x) / 14) assert (heurisch(sqrt(1 - 7 * x**2), x, hints=[]) == x * sqrt(1 - 7 * x**2) / 2 + sqrt(7) * asin(sqrt(7) * x) / 14) assert heurisch(sqrt(y * x**2 - 1), x, hints=[]) is None assert (heurisch(1 / sqrt(1 + 7 * x**2), x, hints=[]) == sqrt(7) * asinh(sqrt(7) * x) / 7) assert (heurisch(1 / sqrt(1 - 7 * x**2), x, hints=[]) == sqrt(7) * asin(sqrt(7) * x) / 7) assert heurisch(exp(-7 * x**2), x, hints=[]) == sqrt(7 * pi) * erf(sqrt(7) * x) / 14 assert heurisch(exp(2 * x**2), x, hints=[]) == sqrt(2) * sqrt(pi) * erfi(sqrt(2) * x) / 4 assert (heurisch(exp(2 * x**2 - 3 * x), x, hints=[]) == sqrt(2) * sqrt(pi) * erfi(sqrt(2) * x - 3 * sqrt(2) / 4) / (4 * E**Rational(9, 8))) assert heurisch(1 / sqrt(9 - 4 * x**2), x, hints=[]) == asin(2 * x / 3) / 2 assert heurisch(1 / sqrt(9 + 4 * x**2), x, hints=[]) == asinh(2 * x / 3) / 2 assert heurisch(li(x), x, hints=[]) == x * li(x) - Ei(2 * log(x)) assert heurisch(li(log(x)), x, hints=[]) is None assert (heurisch(sqrt(1 + x), x, hints=[x, sqrt(1 + x)]) == 2 * x * sqrt(x + 1) / 3 + 2 * sqrt(x + 1) / 3)
def test_sympyissue_7383(): x, z, R, a = symbols('x z R a') r = sqrt(x**2 + z**2) u = erf(a*r/sqrt(2))/r Ec = u.diff(z, z).subs({x: sqrt(R*R - z*z)}) assert integrate(Ec, (z, -R, R)).simplify() == \ -2*sqrt(2)*R*a**3*exp(-R**2*a**2/2)/(3*sqrt(pi))
def test_gruntz_eval_special(): # Gruntz, p. 126 assert gruntz(exp(x)*(sin(1/x + exp(-x)) - sin(1/x + exp(-x**2))), x) == 1 assert gruntz((erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x**2), x) == -2/sqrt(pi) assert gruntz(exp(exp(x)) * (exp(sin(1/x + exp(-exp(x)))) - exp(sin(1/x))), x) == 1 assert gruntz(exp(x)*(gamma(x + exp(-x)) - gamma(x)), x) == oo assert gruntz(exp(exp(digamma(digamma(x))))/x, x) == exp(-Rational(1, 2)) assert gruntz(exp(exp(digamma(log(x))))/x, x) == exp(-Rational(1, 2)) assert gruntz(digamma(digamma(digamma(x))), x) == oo assert gruntz(loggamma(loggamma(x)), x) == oo assert gruntz(((gamma(x + 1/gamma(x)) - gamma(x))/log(x) - cos(1/x)) * x*log(x), x) == -Rational(1, 2) assert gruntz(x * (gamma(x - 1/gamma(x)) - gamma(x) + log(x)), x) \ == Rational(1, 2) assert gruntz((gamma(x + 1/gamma(x)) - gamma(x)) / log(x), x) == 1
def test_NormalDistribution(): nd = NormalDistribution(0, 1) x = Symbol('x') assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + Rational(1, 2) assert isinstance(nd.sample(), float) or nd.sample().is_Number assert nd.expectation(1, x) == 1 assert nd.expectation(x, x) == 0 assert nd.expectation(x**2, x) == 1
def test_expint(): assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma), y**(x - 1)*uppergamma(1 - x, y), x) assert mytd( expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x) assert mytd(expint(x, y), -expint(x - 1, y), y) assert mytn(expint(1, x), expint(1, x).rewrite(Ei), -Ei(x*polar_lift(-1)) + I*pi, x) assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \ + 24*exp(-x)/x**4 + 24*exp(-x)/x**5 assert expint(-Rational(3, 2), x) == \ exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \ + 3*sqrt(pi)/(4*x**Rational(5, 2)) assert tn_branch(expint, 1) assert tn_branch(expint, 2) assert tn_branch(expint, 3) assert tn_branch(expint, 1.7) assert tn_branch(expint, pi) assert expint(y, x*exp_polar(2*I*pi)) == \ x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(y, x*exp_polar(-2*I*pi)) == \ x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x) assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x) assert (expint(n, x*exp_polar(2*I*pi)) == expint(n, x*exp_polar(2*I*pi), evaluate=False)) assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x) assert (expint(2, x, evaluate=False).rewrite(Shi) == expint(2, x, evaluate=False)) assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x) assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si), -Ci(x) + I*Si(x) - I*pi/2, x) assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint), -x*E1(x) + exp(-x), x) assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint), x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x) assert expint(Rational(3, 2), z).nseries(z, n=10) == \ 2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \ 2*sqrt(pi)*sqrt(z) + O(z**6) assert E1(z).series(z) == -EulerGamma - log(z) + z - \ z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6) assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \ z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \ z**5/240 + O(z**6) assert (expint(x, x).series(x, x0=1, n=2) == expint(1, 1) + (x - 1)*(-meijerg(((), (1, 1)), ((0, 0, 0), ()), 1) - 1/E) + O((x - 1)**2, (x, 1))) pytest.raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
def test_simplify_other(): assert simplify(sin(x)**2 + cos(x)**2) == 1 assert simplify(gamma(x + 1)/gamma(x)) == x assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x assert simplify( Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1) nc = symbols('nc', commutative=False) assert simplify(x + x*nc) == x*(1 + nc) # issue sympy/sympy#6123 # f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2) # ans = integrate(f, (k, -oo, oo), conds='none') ans = (I*(-pi*x*exp(-3*I*pi/4 + I*x**2/(4*t))*erf(x*exp(-3*I*pi/4) / (2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(-3*I*pi/4 + I*x**2/(4*t)) / (2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * (-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t))) assert simplify(ans) == -(-1)**Rational(3, 4)*sqrt(pi)/sqrt(t) # issue sympy/sympy#6370 assert simplify(2**(2 + x)/4) == 2**x
def test_expint(): assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma), y**(x - 1) * uppergamma(1 - x, y), x) assert mytd(expint(x, y), -y**(x - 1) * meijerg([], [1, 1], [0, 0, 1 - x], [], y), x) assert mytd(expint(x, y), -expint(x - 1, y), y) assert mytn(expint(1, x), expint(1, x).rewrite(Ei), -Ei(x * polar_lift(-1)) + I * pi, x) assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \ + 24*exp(-x)/x**4 + 24*exp(-x)/x**5 assert expint(-Rational(3, 2), x) == \ exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \ + 3*sqrt(pi)/(4*x**Rational(5, 2)) assert tn_branch(expint, 1) assert tn_branch(expint, 2) assert tn_branch(expint, 3) assert tn_branch(expint, 1.7) assert tn_branch(expint, pi) assert expint(y, x*exp_polar(2*I*pi)) == \ x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(y, x*exp_polar(-2*I*pi)) == \ x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(2, x * exp_polar(2 * I * pi)) == 2 * I * pi * x + expint(2, x) assert expint(2, x * exp_polar(-2 * I * pi)) == -2 * I * pi * x + expint(2, x) assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x) assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x) assert mytn(E1(polar_lift(I) * x), E1(polar_lift(I) * x).rewrite(Si), -Ci(x) + I * Si(x) - I * pi / 2, x) assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint), -x * E1(x) + exp(-x), x) assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint), x**2 * E1(x) / 2 + (1 - x) * exp(-x) / 2, x) assert expint(Rational(3, 2), z).nseries(z, n=10) == \ 2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \ 2*sqrt(pi)*sqrt(z) + O(z**6) assert E1(z).series(z) == -EulerGamma - log(z) + z - \ z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6) assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \ z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \ z**5/240 + O(z**6)
def test_sympyissue_3940(): a, b, c, d = symbols('a:d', positive=True, finite=True) assert integrate(exp(-x**2 + I*c*x), x) == \ -sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2 assert integrate(exp(a*x**2 + b*x + c), x) == \ sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a)) assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \ sqrt(pi)*exp(-k**2/4) a, d = symbols('a d', positive=True) assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \ sqrt(pi)*exp(d**2/a)/sqrt(a)
def test_ratsimp(): f, g = 1/x + 1/y, (x + y)/(x*y) assert f != g and ratsimp(f) == g f, g = 1/(1 + 1/x), 1 - 1/(x + 1) assert f != g and ratsimp(f) == g f, g = x/(x + y) + y/(x + y), 1 assert f != g and ratsimp(f) == g f, g = -x - y - y**2/(x + y) + x**2/(x + y), -2*y assert f != g and ratsimp(f) == g f = (a*c*x*y + a*c*z - b*d*x*y - b*d*z - b*t*x*y - b*t*x - b*t*z + e*x)/(x*y + z) G = [a*c - b*d - b*t + (-b*t*x + e*x)/(x*y + z), a*c - b*d - b*t - ( b*t*x - e*x)/(x*y + z)] assert f != g and ratsimp(f) in G A = sqrt(pi) B = log(erf(x) - 1) C = log(erf(x) + 1) D = 8 - 8*erf(x) f = A*B/D - A*C/D + A*C*erf(x)/D - A*B*erf(x)/D + 2*A/D assert ratsimp(f) == A*B/8 - A*C/8 - A/(4*erf(x) - 4)
def test_unpolarify(): p = exp_polar(7*I) + 1 u = exp(7*I) + 1 assert unpolarify(1) == 1 assert unpolarify(p) == u assert unpolarify(p**2) == u**2 assert unpolarify(p**x) == p**x assert unpolarify(p*x) == u*x assert unpolarify(p + x) == u + x assert unpolarify(sqrt(sin(p))) == sqrt(sin(u)) # Test reduction to principal branch 2*pi. t = principal_branch(x, 2*pi) assert unpolarify(t) == x assert unpolarify(sqrt(t)) == sqrt(t) # Test exponents_only. assert unpolarify(p**p, exponents_only=True) == p**u assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u) # Test functions. assert unpolarify(sin(p)) == sin(u) assert unpolarify(tanh(p)) == tanh(u) assert unpolarify(gamma(p)) == gamma(u) assert unpolarify(erf(p)) == erf(u) assert unpolarify(uppergamma(x, p)) == uppergamma(x, p) assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \ uppergamma(sin(u), sin(u + 1)) assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \ uppergamma(0, 2) assert unpolarify(Eq(p, 0)) == Eq(u, 0) assert unpolarify(Ne(p, 0)) == Ne(u, 0) assert unpolarify(polar_lift(x) > 0) == (x > 0) # Test bools assert unpolarify(True) is True
def test_erfi(): assert erfi(nan) == nan assert erfi(oo) == S.Infinity assert erfi(-oo) == S.NegativeInfinity assert erfi(0) == S.Zero assert erfi(I * oo) == I assert erfi(-I * oo) == -I assert erfi(-x) == -erfi(x) assert erfi(I * erfinv(x)) == I * x assert erfi(I * erfcinv(x)) == I * (1 - x) assert erfi(I * erf2inv(0, x)) == I * x assert erfi(I).is_extended_real is False assert erfi(w).is_extended_real is True assert erfi(z).is_extended_real is None assert conjugate(erfi(z)) == erfi(conjugate(z)) assert erfi(z).rewrite('erf') == -I * erf(I * z) assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I assert erfi(z).rewrite('fresnels') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('fresnelc') == (1 - I) * ( fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z * (1 + I) / sqrt(pi))) assert erfi(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half], z **2) / sqrt(pi) assert erfi(z).rewrite('meijerg') == z * meijerg( [S.Half], [], [0], [-S.Half], -z**2) / sqrt(pi) assert erfi(z).rewrite('uppergamma') == ( sqrt(-z**2) / z * (uppergamma(S.Half, -z**2) / sqrt(S.Pi) - S.One)) assert erfi(z).rewrite( 'expint') == sqrt(-z**2) / z - z * expint(S.Half, -z**2) / sqrt(S.Pi) assert erfi(x).as_real_imag() == \ ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
def test_inverse_laplace_transform(): from diofant import sinh, cosh, besselj, besseli, simplify, factor_terms ILT = inverse_laplace_transform a, b, c, = symbols('a b c', positive=True, finite=True) t = symbols('t') def simp_hyp(expr): return factor_terms(expand_mul(expr)).rewrite(sin) # just test inverses of all of the above assert ILT(1 / s, s, t) == Heaviside(t) assert ILT(1 / s**2, s, t) == t * Heaviside(t) assert ILT(1 / s**5, s, t) == t**4 * Heaviside(t) / 24 assert ILT(exp(-a * s) / s, s, t) == Heaviside(t - a) assert ILT(exp(-a * s) / (s + b), s, t) == exp(b * (a - t)) * Heaviside(-a + t) assert ILT(a / (s**2 + a**2), s, t) == sin(a * t) * Heaviside(t) assert ILT(s / (s**2 + a**2), s, t) == cos(a * t) * Heaviside(t) # TODO is there a way around simp_hyp? assert simp_hyp(ILT(a / (s**2 - a**2), s, t)) == sinh(a * t) * Heaviside(t) assert simp_hyp(ILT(s / (s**2 - a**2), s, t)) == cosh(a * t) * Heaviside(t) assert ILT(a / ((s + b)**2 + a**2), s, t) == exp(-b * t) * sin(a * t) * Heaviside(t) assert ILT((s + b) / ((s + b)**2 + a**2), s, t) == exp(-b * t) * cos(a * t) * Heaviside(t) # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess # TODO should this simplify further? assert ILT(exp(-a*s)/s**b, s, t) == \ (t - a)**(b - 1)*Heaviside(t - a)/gamma(b) assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \ Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even # XXX ILT turns these branch factor into trig functions ... assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2), s, t).rewrite(exp)) == \ Heaviside(t)*besseli(b, a*t) assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2), s, t).rewrite(exp) == \ Heaviside(t)*besselj(b, a*t) assert ILT(1 / (s * sqrt(s + 1)), s, t) == Heaviside(t) * erf(sqrt(t)) # TODO can we make erf(t) work? assert ILT(1 / (s**2 * (s**2 + 1)), s, t) == (t - sin(t)) * Heaviside(t) assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\ Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]])
def test_single_normal(): mu = Symbol('mu', real=True) sigma = Symbol('sigma', real=True, positive=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert simplify(E(Y)) == mu assert simplify(variance(Y)) == sigma**2 pdf = density(Y) x = Symbol('x') assert (pdf(x) == sqrt(2)*exp(-(x - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma)) assert P(X**2 < 1) == erf(sqrt(2)/2) assert E(X, Eq(X, mu)) == mu
def test_heurisch_hacking(): assert (heurisch(sqrt(1 + 7*x**2), x, hints=[]) == x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14) assert (heurisch(sqrt(1 - 7*x**2), x, hints=[]) == x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14) assert (heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == sqrt(7)*asinh(sqrt(7)*x)/7) assert (heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == sqrt(7)*asin(sqrt(7)*x)/7) assert (heurisch(exp(-7*x**2), x, hints=[]) == sqrt(7*pi)*erf(sqrt(7)*x)/14) assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == asin(2*x/3)/2 assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == asinh(2*x/3)/2 assert heurisch(li(x), x, hints=[]) == x*li(x) - Ei(2*log(x))
def test_inverse_laplace_transform(): ILT = inverse_laplace_transform a, b, c, = symbols('a b c', positive=True, finite=True) def simp_hyp(expr): return factor_terms(expand_mul(expr)).rewrite(sin) # just test inverses of all of the above assert ILT(1/s, s, t) == Heaviside(t) assert ILT(1/s**2, s, t) == t*Heaviside(t) assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24 assert ILT(exp(-a*s)/s, s, t) == Heaviside(t - a) assert ILT(exp(-a*s)/(s + b), s, t) == exp(b*(a - t))*Heaviside(-a + t) assert ILT(a/(s**2 + a**2), s, t) == sin(a*t)*Heaviside(t) assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t) # TODO is there a way around simp_hyp? assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t) assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t) assert ILT(a/((s + b)**2 + a**2), s, t) == exp(-b*t)*sin(a*t)*Heaviside(t) assert ILT( (s + b)/((s + b)**2 + a**2), s, t) == exp(-b*t)*cos(a*t)*Heaviside(t) # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess # TODO should this simplify further? assert ILT(exp(-a*s)/s**b, s, t) == \ (t - a)**(b - 1)*Heaviside(t - a)/gamma(b) assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \ Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even # XXX ILT turns these branch factor into trig functions ... assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2), s, t).rewrite(exp)) == \ Heaviside(t)*besseli(b, a*t) assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2), s, t).rewrite(exp) == \ Heaviside(t)*besselj(b, a*t) assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t)) # TODO can we make erf(t) work? assert ILT(1/(s**2*(s**2 + 1)), s, t) == (t - sin(t))*Heaviside(t) assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\ Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]])
def test_lowergamma(): assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y) assert td(lowergamma(randcplx(), y), y) assert td(lowergamma(x, randcplx()), x) assert lowergamma(x, y).diff(x) == \ gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \ - meijerg([], [1, 1], [0, 0, x], [], y) pytest.raises(ArgumentIndexError, lambda: lowergamma(x, y).fdiff(3)) assert lowergamma(Rational(1, 2), x) == sqrt(pi)*erf(sqrt(x)) assert not lowergamma(Rational(1, 2) - 3, x).has(lowergamma) assert not lowergamma(Rational(1, 2) + 3, x).has(lowergamma) assert lowergamma(Rational(1, 2), x, evaluate=False).has(lowergamma) assert tn(lowergamma(Rational(1, 2) + 3, x, evaluate=False), lowergamma(Rational(1, 2) + 3, x), x) assert tn(lowergamma(Rational(1, 2) - 3, x, evaluate=False), lowergamma(Rational(1, 2) - 3, x), x) assert lowergamma(0, 1) == zoo assert tn_branch(-3, lowergamma) assert tn_branch(-4, lowergamma) assert tn_branch(Rational(1, 3), lowergamma) assert tn_branch(pi, lowergamma) assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x) assert lowergamma(y, exp_polar(5*pi*I)*x) == \ exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I)) assert lowergamma(-2, exp_polar(5*pi*I)*x) == \ lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y)) assert conjugate(lowergamma(x, 0)) == conjugate(lowergamma(x, 0)) assert conjugate(lowergamma(x, -oo)) == conjugate(lowergamma(x, -oo)) assert lowergamma( x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x) k = Symbol('k', integer=True) assert lowergamma( k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k) k = Symbol('k', integer=True, positive=False) assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y) assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y) assert (x*lowergamma(x, 1)/gamma(x + 1)).limit(x, 0) == 1
def test_heurisch_hacking(): assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \ x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14 assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \ x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14 assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \ sqrt(7)*asinh(sqrt(7)*x)/7 assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \ sqrt(7)*asin(sqrt(7)*x)/7 assert heurisch(exp(-7*x**2), x, hints=[]) == \ sqrt(7*pi)*erf(sqrt(7)*x)/14 assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \ asin(2*x/3)/2 assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \ asinh(2*x/3)/2
def test_lowergamma(): from diofant import meijerg, exp_polar, I, expint assert lowergamma(x, y).diff(y) == y**(x - 1) * exp(-y) assert td(lowergamma(randcplx(), y), y) assert td(lowergamma(x, randcplx()), x) assert lowergamma(x, y).diff(x) == \ gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \ - meijerg([], [1, 1], [0, 0, x], [], y) assert lowergamma(S.Half, x) == sqrt(pi) * erf(sqrt(x)) assert not lowergamma(S.Half - 3, x).has(lowergamma) assert not lowergamma(S.Half + 3, x).has(lowergamma) assert lowergamma(S.Half, x, evaluate=False).has(lowergamma) assert tn(lowergamma(S.Half + 3, x, evaluate=False), lowergamma(S.Half + 3, x), x) assert tn(lowergamma(S.Half - 3, x, evaluate=False), lowergamma(S.Half - 3, x), x) assert tn_branch(-3, lowergamma) assert tn_branch(-4, lowergamma) assert tn_branch(Rational(1, 3), lowergamma) assert tn_branch(pi, lowergamma) assert lowergamma(3, exp_polar(4 * pi * I) * x) == lowergamma(3, x) assert lowergamma(y, exp_polar(5*pi*I)*x) == \ exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I)) assert lowergamma(-2, exp_polar(5*pi*I)*x) == \ lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y)) assert conjugate(lowergamma(x, 0)) == conjugate(lowergamma(x, 0)) assert conjugate(lowergamma(x, -oo)) == conjugate(lowergamma(x, -oo)) assert lowergamma( x, y).rewrite(expint) == -y**x * expint(-x + 1, y) + gamma(x) k = Symbol('k', integer=True) assert lowergamma( k, y).rewrite(expint) == -y**k * expint(-k + 1, y) + gamma(k) k = Symbol('k', integer=True, positive=False) assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y) assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)
def test_erf_evalf(): assert abs( erf(Float(2.0)) - 0.995322265 ) < 1E-8 # XXX
def test_risch_option(): # risch=True only allowed on indefinite integrals pytest.raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True)) assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x) assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2) assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
def test_erf_series(): assert erf(x).series(x, 0, 7) == 2*x/sqrt(pi) - \ 2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7)
def test_sympyissue_13575(): assert limit(acos(erfi(x)), x, 1) == pi/2 + I*log(sqrt(erf(I)**2 + 1) + erf(I))
def test_erf(): assert erf(nan) == nan assert erf(oo) == 1 assert erf(-oo) == -1 assert erf(0) == 0 assert erf(I*oo) == oo*I assert erf(-I*oo) == -oo*I assert erf(-2) == -erf(2) assert erf(-x*y) == -erf(x*y) assert erf(-x - y) == -erf(x + y) assert erf(erfinv(x)) == x assert erf(erfcinv(x)) == 1 - x assert erf(erf2inv(0, x)) == x assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x assert erf(I).is_extended_real is False assert erf(w).is_extended_real is True assert erf(z).is_extended_real is None assert conjugate(erf(z)) == erf(conjugate(z)) assert erf(x).as_leading_term(x) == 2*x/sqrt(pi) assert erf(1/x).as_leading_term(x) == erf(1/x) assert erf(z).rewrite('uppergamma') == sqrt(z**2)*erf(sqrt(z**2))/z assert erf(z).rewrite('erfc') == 1 - erfc(z) assert erf(z).rewrite('erfi') == -I*erfi(I*z) assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erf(z).rewrite('hyper') == 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], -z**2)/sqrt(pi) assert erf(z).rewrite('meijerg') == z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi) assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(Rational(1, 2), z**2)/sqrt(pi) assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \ 2/sqrt(pi) assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi) assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1 assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1 l = Limit((1 - erf(y/x))*exp(y**2/x**2), x, 0) assert l.doit() == l # cover _erfs._eval_aseries assert erf(x).as_real_imag() == \ ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 + erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2, I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) - erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) * re(x)*Abs(im(x))/(2*im(x)*Abs(re(x))))) assert erf(x).as_real_imag() == erf(x).as_real_imag(deep=False) assert erf(w).as_real_imag() == (erf(w), 0) assert erf(w).as_real_imag() == erf(w).as_real_imag(deep=False) assert erf(I).as_real_imag() == (0, erfi(1)) pytest.raises(ArgumentIndexError, lambda: erf(x).fdiff(2)) assert erf(x).taylor_term(3, x, *(2*x/sqrt(pi), 0)) == -2*x**3/3/sqrt(pi)
def test_pmint_erf(): f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1) g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4) assert ratsimp(heurisch(f, x)) == g
def test_sympyissue_10976(): assert gruntz(erf(m/x)/erf(1/x), x) == m
def test_fresnel(): assert fresnels(0) == 0 assert fresnels(+oo) == Rational(+1, 2) assert fresnels(-oo) == Rational(-1, 2) assert fresnels(z) == fresnels(z) assert fresnels(-z) == -fresnels(z) assert fresnels(I*z) == -I*fresnels(z) assert fresnels(-I*z) == I*fresnels(z) assert conjugate(fresnels(z)) == fresnels(conjugate(z)) assert fresnels(z).diff(z) == sin(pi*z**2/2) assert fresnels(z).rewrite(erf) == (1 + I)/4 * ( erf((1 + I)/2*sqrt(pi)*z) - I*erf((1 - I)/2*sqrt(pi)*z)) assert fresnels(z).rewrite(hyper) == \ pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16) assert fresnels(z).series(z, n=15) == \ pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15) assert fresnels(y/z).limit(z, 0) == fresnels(oo*sign(y)) assert fresnels(x).taylor_term(-1, z) == 0 assert fresnels(x).taylor_term(1, z, *(pi*z**3/6,)) == -pi**3*z**7/336 assert fresnels(x).taylor_term(1, z) == -pi**3*z**7/336 assert fresnels(w).is_extended_real is True assert fresnels(z).is_extended_real is None assert fresnels(z).as_real_imag() == \ ((fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 + fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2, I*(fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) - fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) * re(z)*Abs(im(z))/(2*im(z)*Abs(re(z))))) assert fresnels(z).as_real_imag(deep=False) == fresnels(z).as_real_imag() assert fresnels(w).as_real_imag() == (fresnels(w), 0) assert fresnels(w).as_real_imag(deep=False) == fresnels(w).as_real_imag() assert (fresnels(I, evaluate=False).as_real_imag() == (0, -erf(sqrt(pi)/2 + I*sqrt(pi)/2)/4 + I*(-erf(sqrt(pi)/2 + I*sqrt(pi)/2) + erf(sqrt(pi)/2 - I*sqrt(pi)/2))/4 - erf(sqrt(pi)/2 - I*sqrt(pi)/2)/4)) assert fresnels(2 + 3*I).as_real_imag() == ( fresnels(2 + 3*I)/2 + fresnels(2 - 3*I)/2, I*(fresnels(2 - 3*I) - fresnels(2 + 3*I))/2 ) assert expand_func(integrate(fresnels(z), z)) == \ z*fresnels(z) + cos(pi*z**2/2)/pi assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(9, 4) * \ meijerg(((), (1,)), ((Rational(3, 4),), (Rational(1, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(3, 4)*(z**2)**Rational(3, 4)) assert fresnelc(0) == 0 assert fresnelc(+oo) == Rational(+1, 2) assert fresnelc(-oo) == Rational(-1, 2) assert fresnelc(z) == fresnelc(z) assert fresnelc(-z) == -fresnelc(z) assert fresnelc(I*z) == I*fresnelc(z) assert fresnelc(-I*z) == -I*fresnelc(z) assert conjugate(fresnelc(z)) == fresnelc(conjugate(z)) assert fresnelc(z).diff(z) == cos(pi*z**2/2) pytest.raises(ArgumentIndexError, lambda: fresnels(z).fdiff(2)) pytest.raises(ArgumentIndexError, lambda: fresnelc(z).fdiff(2)) assert fresnelc(z).rewrite(erf) == (1 - I)/4 * ( erf((1 + I)/2*sqrt(pi)*z) + I*erf((1 - I)/2*sqrt(pi)*z)) assert fresnelc(z).rewrite(hyper) == \ z * hyper([Rational(1, 4)], [Rational(1, 2), Rational(5, 4)], -pi**2*z**4/16) assert fresnelc(x).taylor_term(-1, z) == 0 assert fresnelc(x).taylor_term(1, z, *(z,)) == -pi**2*z**5/40 assert fresnelc(x).taylor_term(1, z) == -pi**2*z**5/40 assert fresnelc(z).series(z, n=15) == \ z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15) assert fresnelc(y/z).limit(z, 0) == fresnelc(oo*sign(y)) # issue sympy/sympy#6510 assert fresnels(z).series(z, oo) == \ (-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + \ (3/(pi**3*z**5) - 1/(pi*z) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + Rational(1, 2) assert fresnelc(z).series(z, oo) == \ (-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + \ (-3/(pi**3*z**5) + 1/(pi*z) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + Rational(1, 2) assert fresnels(1/z).series(z) == \ (-z**3/pi**2 + O(z**6))*sin(pi/(2*z**2)) + (-z/pi + 3*z**5/pi**3 + O(z**6))*cos(pi/(2*z**2)) + Rational(1, 2) assert fresnelc(1/z).series(z) == \ (-z**3/pi**2 + O(z**6))*cos(pi/(2*z**2)) + (z/pi - 3*z**5/pi**3 + O(z**6))*sin(pi/(2*z**2)) + Rational(1, 2) assert fresnelc(w).is_extended_real is True assert fresnelc(z).as_real_imag() == \ ((fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 + fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2, I*(fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) - fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) * re(z)*Abs(im(z))/(2*im(z)*Abs(re(z))))) assert fresnelc(2 + 3*I).as_real_imag() == ( fresnelc(2 - 3*I)/2 + fresnelc(2 + 3*I)/2, I*(fresnelc(2 - 3*I) - fresnelc(2 + 3*I))/2 ) assert expand_func(integrate(fresnelc(z), z)) == \ z*fresnelc(z) - sin(pi*z**2/2)/pi assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(3, 4) * \ meijerg(((), (1,)), ((Rational(1, 4),), (Rational(3, 4), 0)), -pi**2*z**4/16)/(2*root(-z, 4)*root(z**2, 4)) verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z) verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z) verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z) verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z) verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z) verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z) verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z) verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)
def test_erf2(): assert erf2(0, 0) == 0 assert erf2(x, x) == 0 assert erf2(nan, 0) == nan assert erf2(-oo, y) == erf(y) + 1 assert erf2( oo, y) == erf(y) - 1 assert erf2( x, oo) == 1 - erf(x) assert erf2( x, -oo) == -1 - erf(x) assert erf2(x, erf2inv(x, y)) == y assert erf2(-x, -y) == -erf2(x, y) assert erf2(-x, y) == erf(y) + erf(x) assert erf2( x, -y) == -erf(y) - erf(x) assert erf2(x, y).rewrite('fresnels') == erf(y).rewrite(fresnels)-erf(x).rewrite(fresnels) assert erf2(x, y).rewrite('fresnelc') == erf(y).rewrite(fresnelc)-erf(x).rewrite(fresnelc) assert erf2(x, y).rewrite('hyper') == erf(y).rewrite(hyper)-erf(x).rewrite(hyper) assert erf2(x, y).rewrite('meijerg') == erf(y).rewrite(meijerg)-erf(x).rewrite(meijerg) assert erf2(x, y).rewrite('uppergamma') == erf(y).rewrite(uppergamma) - erf(x).rewrite(uppergamma) assert erf2(x, y).rewrite('expint') == erf(y).rewrite(expint)-erf(x).rewrite(expint) assert erf2(I, w).is_extended_real is False assert erf2(2*w, w).is_extended_real is True assert erf2(z, w).is_extended_real is None assert erf2(w, z).is_extended_real is None assert conjugate(erf2(x, y)) == erf2(conjugate(x), conjugate(y)) assert erf2(x, y).rewrite('erf') == erf(y) - erf(x) assert erf2(x, y).rewrite('erfc') == erfc(x) - erfc(y) assert erf2(x, y).rewrite('erfi') == I*(erfi(I*x) - erfi(I*y)) pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(3)) pytest.raises(ArgumentIndexError, lambda: erf2(x, y).fdiff(3)) assert erf2(x, y).diff(x) == -2*exp(-x**2)/sqrt(pi) assert erf2(x, y).diff(y) == +2*exp(-y**2)/sqrt(pi)
def test_heurisch_special(): assert heurisch(erf(x), x) == x*erf(x) + exp(-x**2)/sqrt(pi) assert heurisch(exp(-x**2)*erf(x), x) == sqrt(pi)*erf(x)**2 / 4
def test_meijerint(): s, t, mu = symbols('s t mu', extended_real=True) assert integrate(meijerg([], [], [0], [], s*t) * meijerg([], [], [mu/2], [-mu/2], t**2/4), (t, 0, oo)).is_Piecewise s = symbols('s', positive=True) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \ gamma(s + 1) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=True) == gamma(s + 1) assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=False), Integral) assert meijerint_indefinite(exp(x), x) == exp(x) # TODO what simplifications should be done automatically? # This tests "extra case" for antecedents_1. a, b = symbols('a b', positive=True) assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \ b**(a + 1)/(a + 1) # This tests various conditions and expansions: meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True) # Again, how about simplifications? sigma, mu = symbols('sigma mu', positive=True) i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo) assert simplify(i) == sqrt(pi)*sigma*(erf(mu/(2*sigma)) + 1) assert c i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo) # TODO it would be nice to test the condition assert simplify(i) == 1/(mu - sigma) # Test substitutions to change limits assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True) # Note: causes a NaN in _check_antecedents assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1 assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \ 1 - exp(-exp(I*arg(x))*abs(x)) # Test -oo to oo assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True) assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True) assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \ (sqrt(pi)/2, True) assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True) assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2), x, -oo, oo) == (1, True) # Test one of the extra conditions for 2 g-functinos assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (Rational(1, 2), True) # Test a bug def res(n): return (1/(1 + x**2)).diff(x, n).subs({x: 1})*(-1)**n for n in range(6): assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \ res(n) # This used to test trigexpand... now it is done by linear substitution assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True) ) == sqrt(2)*sin(a + pi/4)/2 # Test the condition 14 from prudnikov. # (This is besselj*besselj in disguise, to stop the product from being # recognised in the tables.) a, b, s = symbols('a b s') assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4) * meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \ (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) * gamma(a/2 + b/2 - s + 1)), And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1)) # test a bug assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \ Integral(sin(x**a)*sin(x**b), (x, 0, oo)) # test better hyperexpand assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \ (sqrt(pi)*polygamma(0, Rational(1, 2))/4).expand() # Test hyperexpand bug. n = symbols('n', integer=True) assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \ lowergamma(n + 1, x) # Test a bug with argument 1/x alpha = symbols('alpha', positive=True) assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \ (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + Rational(1, 2), alpha/2 + 1)), ((0, 0, Rational(1, 2)), (-Rational(1, 2),)), alpha**2/16)/4, True) # test a bug related to 3016 a, s = symbols('a s', positive=True) assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \ a**(-s/2 - Rational(1, 2))*((-1)**s + 1)*gamma(s/2 + Rational(1, 2))/2